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Abstract

Homological Algebra has earned its place as part of the modern mathematical
landscape. It has been applied extensively in algebraic topology and geometry,
ring theory, group theory, number theory, and many other areas. Some example
results are: the Serre intersection formula, the Weil conjectures as well as a
reformulation of the Artin-Wedderburn theorem. Herein we present a down-to-
earth introduction to homological algebra aimed at undergraduates. Homological
algebra has a simple set of axioms that hold throughout many different areas of
mathematics.

In Chapter 1 there is a brief introduction to category theory that will culmi-
nate in the description of abelian categories. Followed by a discussion of some
of their basic properties and the statement of Mitchell’s full embedding theorem.
In Chapter 2 we study the structure of categories of modules over a unital as-
sociative ring. Their tensor product as well as the tensor product of algebras
will be constructed. We then proceed with an abstract treatment of exact se-
quences, chain complexes, and homology. Attention to the categorical duals of
the aforementioned notions will also be drawn. We begin with more concrete ma-
terial in Chapter 3 where we introduce Hochschild (Co)homology. Here a number
of the low dimensional homology and cohomology groups will be characterised,
finished with examples of computations. Chapter 4 shows some applications of
Hochschild cohomology to algebraic deformation theory. We conclude by present-
ing a method to produce associative deformations that circumvents the need for
Hochschild cohomology entirely and pose some questions for future work. This
method contributes to the understanding of the theory of associative deformations
of algebras.
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Chapter 1

Category Theory

1.1 Initial definition and examples

Modern homological algebra is the unification of many formerly disparate notions
found in different areas of mathematics. This unification made use of a powerful
language that could describe very general and vastly different ideas. This is the
language of categories. They are introduced here. We shall draw on ideas from
chapter 1.2 of [12] and chapter 1 of [8].

Definition 1. A category C consists of

• a class of objects Ob(C),

• for every two objects A,B a set Hom(A,B)1 of morphisms from A to B,
often denoted by arrows f : A → B, and identity morphisms 1A for every
object A,

• for every three objects A,B,C a composition rule

Hom(A,B)× Hom(B,C) → Hom(A,C)

(f, g) 7→ g ◦ f

that is associative.

This definition is extremely general and manages to capture most algebraic
structures with their appropriate homomorphisms.

Example 1. We shall first discuss some familiar examples.

• Sets which has sets as its objects and functions as its morphisms. This is
a category because every set has an identity function and the composition
of functions is associative.

• Groups the category of groups and group homomorphisms as well as Ab
the category of abelian groups and group homomorphisms.

1This notation will be used when the category C is not ambiguous, otherwise the notation
HomC(A,B) will be used

1



Abelian Categories, Hochschild (Co)homology and Algebraic Deformations 2

• Top the category of topological spaces and continuous maps.

• Vectk the category of vector spaces over a field k and linear transformations.

• RMod the category of left R-modules for a unital associative ring R and
R-homomorphisms.

• Rings the category of unital associative rings and identity preserving ring
homomorphisms as well as ComRings the category of commutative rings
and identity preserving ring homomorphisms.

We notice that the category Ab appears to be a subcollection of Groups and
indeed this is the case! We capture this formally as follows.

Definition 2. A category D is a subcategory of another category C if:

• the objects of D are a subcollection of the objects of C,

• if the morphism f : A → B in C is in D then so are A,B,

• if two composable morphisms f, g in C are in D then so is their composition
g ◦ f ,

• if an object x ∈ Ob(D) then 1X : X → X is also in D.

We say D is a full subcategory of C if:

HomD(A,B) = HomC(A,B)

for every pair of objects A,B ∈ D.

Example 2. • Ab is a full subcategory of Groups,

• ComRings is a full subcategory of Rings.

• Rings is a subcategory of the category of rings and ring homomorphisms
(not necessarily preserving the unit) and is not full.

For any category C we define its dual category Cop where the arrows go the
other way, thus for objects A,B in C:

HomCop(A,B) = HomC(B,A).

While the preceding examples exclusively deal with algebraic structures and
their homomorphisms, this need not be the case:

Definition 3. A poset is a set endowed with a relation “ ≤ ” that is reflexive,
transitive and antisymmetric.

We can regard any poset (P,≤) as a category P as follows:

• the objects are the elements of P ,

2
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• Hom(a, b) =

{
{tba}, a ≤ b

∅, otherwise

where tba : a → b. Identity arrows are guaranteed by reflexivity of ≤ and compo-
sition is defined and is associative by the transitivity of ≤.

This leads us to:

Example 3. • The set Z is a poset where we use the usual ≤ relation and
is thus also a category. We will denote this category by Z and the category
that arises by reversing the relation as Zop.

• As above R is also a poset under its usual ordering and we denote this by
R.

• Let X be a topological space and U be its topology. Then U is a poset
where x ≤ y ⇐⇒ x ⊆ y. We can thus view U as a category where

Hom(x, y) =

{
{iyx}, x ⊆ y

∅, otherwise

where iyx : x → y is the inclusion map.

Definition 4. An object I in a category C is initial if there exists a unique
morphism from I into any object X in C. This is to say

|Hom(I,X)| = 1 ∀X ∈ Ob(C).

An object T is terminal if there exists a unique morphism from any object X
into T . This is to say

|Hom(X,T )| = 1 ∀X ∈ Ob(C).

An object is a zero object if it is both initial and terminal.

Initial and terminal objects are unique up to isomorphism if they exist. In
Sets the empty set is initial since there is only one map from the empty set to any
set. The one point set ∗ is terminal since for each set X the only map f : X → ∗
that sends all elements of X to the one element in the set. The ring Z is initial
in ComRings where:

ϕ : Z → R

n 7→
n∑

i=1

1R

for all R ∈ ComRings. The zero ring is terminal here by a similar argument
to above. Groups has the trivial group as its zero object. The poset category
formed with the set (0, 1) and the usual ordering has no initial or terminal object.

Category theory is very useful to generalise and organise mathematical con-
cepts and it is very good at detecting that two seemingly disparate ideas are in
fact the same. This comes at a cost, and that cost is that one must phrase all
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of their ideas only in the language of objects and morphisms. Where possible we
attempt to generalise familiar concepts to categorical ones. Injective and surjec-
tive maps are concepts familiar to most and they give us an idea of how a given
function behaves. We now give their categorical generalisation:

Definition 5. Let C be a category and A,B,C ∈ C. Then a morphism h : B →
C is a monomorphism if for any pair of maps f, g : A → B:

h ◦ f = h ◦ g =⇒ f = g,

a morphism that is a monomorphism is said to be monic. We also define its dual:
a morphism f : A → B is an epimorphism if for every pair of maps g, h : B → C:

g ◦ f = h ◦ f =⇒ g = h,

a morphism that is an epimorphism is said to be epic.

We observe that in the category of sets that a monomorphism is exactly and
injective map and that an epimorphism is exactly a surjective map. Sets also
has the property that a map that is both a monomorphism and an epimorphism
are isomorphisms, but this can fail in general:

Example 4. We consider Z,R ∈ ComRings. Then i : Z → R the inclusion
map of Z into R is an monomorphism and an epimorphism but it is not true that
Z ∼= R.

It does hold that an isomorphism is both a monomorphism and an epimor-
phism.

1.2 Functors

Functors give us a way to move information from one category to another in a
structure preserving manner. A functor assigns to each object in a category an
object in another while preserving morphisms and their composition, formally:

Definition 6. We follow [12], suppose C and D are categories then a covariant
functor T : C → D assigns to each A ∈ Ob(C) an object T (A) ∈ Ob(D) and to
each morphism f : A → A′ in C a morphism T (f) : T (A) → T (A′) in D such
that:

• if A
f−→ A′ g−→ A′′ in C then T (A)

T (f)−−→ T (A′)
T (g)−−→ T (A′′) in D and

T (g ◦ f) = T (g) ◦ T (f),

• T (1A) = 1T (A) for all objects A in C.

A contravariant functor is a functor between categories that reverses arrows:
let f : A → B be a morphism in a category C and let T be a contravariant
functor, then T (f) : T (B) → T (A). Before the examples a brief justification will

4
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be given. Let A,B be objects in a category C. Then A is isomorphic to B (or
A ∼= B) if there exist morphisms:

f : A → B and g : B → A

such that g ◦ f = 1A and f ◦ g = 1B.

Suppose we apply a functor T : C → D to the above:

T (f) : T (A) → T (B) and T (g) : T (B) → T (A)

such that T (g) ◦ T (f) = 1T (A) and T (f) ◦ T (g) = 1T (B),

thus functors preserve isomorphisms. This fact can be used as follows, suppose
we have two objects A,B in an unfamiliar category C and we wish to discern if
A ∼= B. Then we would consider a functor T from C into a category that is well
known and then check if T (A) ∼= T (B), if this is not then A ̸∼= B.

Example 5. • For a category C there is the identity functor

1C : C → C

A 7→ A for all objects A in C

f 7→ f for all morphisms f in C

• For objects A,B,C in a category C with a morphism f : B → C we define
the hom functor Hom(A,□):

TA : C → Sets

B 7→ Hom(A,B) for all objects B in C

f 7→ TA(f) : Hom(A,B) → Hom(A,C)

where TA(f) is post composition with f . We unpack this and verify it is a
functor. Suppose we have:

B
f−→ C

g−→ D in C

then we get:

Hom(A,B)
TA(f)−−−→ Hom(A,C)

TA(g)−−−→ Hom(A,D) in Sets

where:

TA(g) ◦ TA(f) : Hom(A,B) → Hom(A,D)

ϕ 7→ g ◦ f ◦ ϕ,

and thus composition is preserved. Next we consider the identity map

5
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1B : B → B then:

TA(1B) : Hom(A,B) → Hom(A,B)

ϕ 7→ 1B ◦ ϕ = ϕ,

and thus the identity maps are preserved.

• For objects A,B,C in a category C with a morphism f : A → B we define
the contravariant hom functor Hom(□, C):

LC : C → Sets

A 7→ Hom(A,C) for all objects A in C

f 7→ LC(f) : Hom(B,C) → Hom(A,C)

where LC(f) is precomposition with f .

• Consider the categories Groups, Sets and the functor that takes a group
to its underlying set and sends group homomorphisms to set maps. This is
a ”forgetful functor”.

• The inclusion from Z into R.

• The functor from R to Z that maps x 7→ ⌈x⌉ for all x ∈ R. We recall that
x ≤ y =⇒ ⌈x⌉ ≤ ⌈y⌉, this fact is required for composition of morphisms
to be preserved.

Definition 7. For two covariant functors F,G : C → D a natural transformation
η : F → G is a family of morphisms in D that associates a morphism

ηA : F (A) → G(A)

to each object A in C such that the following diagram commutes for f : A → B
in C

F (A) F (B)

G(A) G(B)

F (f)

G(f)

ηA ηB

If ηA is an isomorphism for each A then η is a natural isomorphism.

Definition 8. As defined in [6], there exists an equivalence between categories
C and D if there exist functors:

F : C → D

G : D → C

6
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and natural isomorphisms:

η : G ◦ F → 1C

ε : F ◦G → 1D.

Proposition 1. There is an equivalence of categories between ZMod and Ab.

Proof. We first define the functor F : ZMod → Ab that takes a left Z-module to
its underlying abelian group, forgetting the Z-action, and behaves similarly for
morphisms. Next we define G : Ab → ZMod which endows an abelian group H
with a Z-action. We consider (H,+) additively and then the Z-action is defined
as follows:

Z×H → H

(n, h) 7→



n∑
i=1

h, n > 0

−n∑
i=1

h, n < 0

0, otherwise

We observe that both G ◦ F = 1Ab and F ◦ G = 1ZMod. We note that equal
functors are naturally isomorphic and thus conclude that ZMod ∼= Ab.

1.3 Diagrams

We now introduce a piece of categorical formalism that is extremely useful. Dia-
grams are an excellent tool to make statements categorically. To the uninitiated
it can seem both very strange and very difficult to make statements only in terms
of objects and morphisms. Diagrams will make this process more intuitive and
accessible.

Definition 9. A category C is small if Ob(C) is a set.2

Definition 10. LetC be a category and I be a small category. Then a diagram in
C is a functor F : I → C. The category I can be referred to as an “index category”
and the resulting diagram an “I-shaped diagram”. The reader is welcome to think
of the diagram as the image of the functor F .

When depicting a diagram the identity arrows and composition arrows are
often omitted in order to make them easier to read. A diagram is said to commute
if every path between every pair of objects is equivalent.

Example 6. We follow the convention of [2], the symbol “•” will be used as
an anonymous placeholder and each one below should be considered a distinct
object.

2Some authors also impose the condition that Hom(A,B) is a set but this follows from
Definition 1

7
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1.
• •

•

2.
• •

• •

3. Associativity can be restated in terms of a commutative diagram. It is
equivalent to the following diagram commuting for all objects A,B,C,D
and morphisms f, g, h in a category:

A B C D
f hg

g◦f

h◦g

4. A Z-shaped diagram:

. . . • • • . . .

these will be discussed in later chapters.

Diagrams are extremely useful for reformulating definitions categorically. Con-
sider the Cartesian product in Sets. For two sets X, Y we get maps

pX : X × Y → X

(x, y) 7→ x

pY : X × Y → Y

(x, y) 7→ y

with an interesting property. Suppose there is a set A, two maps fX : A → X and
fY : A → X then there is a unique map p : A → X×Y such that fX = pX ◦p and
fY = pY ◦ p. This is the defining property of a product and can be summarised

8
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in the following commutative diagram:

A

X × Y

X Y

pX pY

fX fY

∃!p

We can generalise this to a product of more than two objects, suppose we have a
family of objects {Xi}i∈I and maps {fi : A → Xi}i∈I for some indexing set I and
some object A. Then the following triangle commutes for all i simultaneously:

A

∏
i∈I

Xi Xi

fi

pi

∃!p

A category C is said to have products if we can produce the product of any set
of objects over any index set. Products are unique up to isomorphism.

It is often fruitful to examine a definition that stems from a diagram and take
its dual, that is to reverse all the arrows. In this case we get the coproduct.

Suppose we have a family of objects {Xj}j∈J and maps {fj : Xj → A}j∈J for
some indexing set J and some object A. Then the following triangle commutes
for all j simultaneously:

Xj

∐
j∈J

Xj A

ij
fj

∃!i

1.4 Limits and Colimits

The product of two objects is the special case of a categorical notion called a limit
(and similarly the coproduct is an instance of a colimit). Limits and colimits will
allow us to define some familiar concepts that arise in Ab categorically (that is
using only the language of objects and morphisms). Limits combine two ideas: a
universal object and a cone.

Suppose we have a categoryC we are interested in and a small index category I
and we would like some understanding of the diagram that arises from a functor

9
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F : I → C. We can fix an object X in C and consider the constant functor
T : I → C that maps all objects in I to X and all morphisms to 1X . Finally
we can consider a natural transformation η : T → F . This gives us a tuple
(X, {ηi}i∈I) containing an object X and a family of morphisms ηi : X → F (i) for
each i ∈ I, such a tuple is a cone over the diagram given by F .

Example 7. Suppose we have the diagram

• •

then a cone over it is a tuple (X, {η1, η2}):

X

• •

η1 η2

Thus a product is cone over the above diagram.

Definition 11. Consider a category C and a small category I and a functor
F : I → C. Then a cone over the diagram arising from F is a tuple (X, {ηi}i∈I)
where X is an object in C and the ηi : X → F (i) are morphisms in C for each
i ∈ I.

In a general category and for a general diagram cones need not exist, but it
is also possible there are many as in the following diagram:

•

. . . C3 C2 C1

•

Definition 12. Consider a category C, a small category I, a functor F : I → C
and the diagram arising from F . The limit of the diagram is the universal cone.
It is a cone (X, {ηi}i∈I) such that for any other cone (X ′, {η′i}i∈I) there exists a
unique morphism π : X ′ → X such that the following triangle commutes for all
i simultaneously:

X ′ X

i

∃!π

ηi
η′i

Thus the limit of the diagram

A B

10
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is the product A
∏

B. Before going over some examples we will define the dual
notions of cocone and colimit.

Definition 13. Consider a category C and a small category I and a functor
F : I → C. Then a cone under the diagram arising from F or a cocone is a tuple
(X, {ηi}i∈I) where X is an object in C and the ηi : F (i) → X are morphisms in
C for each i ∈ I.

Definition 14. Consider a category C, a small category I, a functor F : I → C
and the diagram arising from F . The colimit of the diagram is the universal
cocone. It is a cocone (X, {ηi}i∈I) such that for any other cocone (X ′, {η′i}i∈I)
there exists a unique morphism π : X → X ′ such that the following triangle
commutes for all i simultaneously:

X ′ X

i

∃!π

ηi
η′i

Proposition 2. Limits, if they exist, are unique up to isomorphism.

Proof. See section 1 of chapter 3 of [10]

Limits and colimits show up throughout category theory and have many uses,
but we have a very specific purpose for them. In category theory we are only
supposed to discuss things in terms of objects and morphisms but for homological
algebra we want to make statements about images and kernels of maps. Later a
specific limit will come to our aid, called an equalizer.

Example 8. Consider two abelian groups A, B and two group homomorphisms
resulting in the following diagram:

A B
f

g

Then we want an object C that has the property that for any map h : X → A
such that f ◦ h = g ◦ h will factor uniquely through C. The limit of this diagram
will be C = {a ∈ A| f(a) = g(a)} ⊆ A. This is clearly an abelian group since
homomorphisms preserve the identity and:

f(a) = g(a) =⇒ f(a−1) = g(a−1)

(f(a) = g(a)) ∩ (f(b) = g(b)) =⇒ f(ab) = g(ab)

and the associativity is inherited. Thus the limit exists in Ab. The colimit of
the diagram requires a bit more unpacking. We want a pair (D,ϕ) such that

11
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ϕ ◦ f = ϕ ◦ g and is universal with this property. The following must commute:

A B D

D′

f

g

ϕ

ϕ′
∃!ϕ̂

In D it must hold that (ϕ ◦ f)− (ϕ ◦ g) = 1D. Thus:

D = B
/
im(f − g)

and ϕ is the canonical map.

Definition 15. Consider the diagram:

• •

Its limit is called an equalizer and its colimit is called a coequalizer.

Clever use of the equalizer and coequalizer will allow us to generalise notions
that do not have an obvious categorical analogue.

1.5 Additive Categories

On our path to developing ideas from homological algebra we need to introduce
the notion of an additive category and strengthen it to that of an abelian category.
Our motivating example will be Ab, the prototypical abelian category.

Consider the category Vectk for a fixed field k. For any two objects V,W we
consider Hom(V,W ) and notice:

(f + αg) ∈ hom(V,W ) ∀ f, g ∈ hom(V,W ); α ∈ k

and therefore Hom(V,W ) is a vector space itself.
There are many examples where the hom-sets in a category are in fact objects

in another category that has more structure than Sets.

Example 9. • In the category Ab we consider Hom(A,B) for two objects
A,B. Then we note f+g ∈ hom(A,B) for f, g ∈ hom(A,B). This addition
will be associative and commutative since it inherits from the operation
defined for B. The identity of Hom(A,B) will be the trivial homomorphism
and for a homomorphism f : A → B its additive inverse in Hom(A,B) is:

f−1 : A → B such that f−1(a) = f(−a) = −f(a),

thus Hom(A,B) is an abelian group for all A,B in Ab.

• Fix a unital commutative ring R and consider the category RMod of left
R−modules. We consider Hom(M,N) for two objects and note that set has
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the structure of an abelian group (similarly to above). An R−action can
be defined:

R× hom(M,N) → hom(M,N)

(r, ϕ) 7→ rϕ

Thus we conclude that Hom(M,N) is a left R−module. Sometimes it will
be convenient to forget the R−module structure of Hom(M,N) and regard
it simply as an abelian group.

Definition 16 ([3], Section 1.2). A category C is additive if:

• the hom-sets of C are objects in Ab,

• composition is bilinear, that is for f, f ′ ∈ hom(A,B) and g, g′ ∈ hom(B,C)

g ◦ (f + f ′) = g ◦ f + g ◦ f ′ and (g + g′) ◦ f = g ◦ f + g′ ◦ f,

• C has a zero object 0 such that Hom(0, 0) = {0} the trivial group,

• and for any objectsX1, X2 there exists an object Y and morphisms p1 : Y →
X1, p2 : Y → X2, i1 : X1 → Y and i2 : X2 → Y satisfying p1 ◦ i1 = 1X1 ,
p2 ◦ i2 = 1X2 and i1 ◦ p1+ i2 ◦ p2 = 1Y . This object Y is called the biproduct
of X1, X2 and is both their product and coproduct.

We note that the biproduct is unique up to isomorphism as it is both a product
and a coproduct by Proposition 2. The natural functor for an additive category
is one that behaves like a group homomorphism between hom-sets. Hence:

Definition 17. Let C and D be additive categories. Then a functor F : C → D
of any variance is an additive functor if for any pair of morphisms f, g : A → B
in C it holds that:

F (f + g) = F (f) + F (g)

and thus F does induce a group homomorphism:

FAB : HomC(A,B) → HomD(F (A), F (B)) if F is covariant

FBA : HomC(A,B) → HomD(F (B), F (A)) if F is contravariant.

Additive functors are compatible with the structure of additive categories and
this will be explored more in a later chapter. We consider two objects A,B in
some additive category C. Their biproduct comes equipped with the following
maps:

A×C B

A B

iA

pA pB

iB

13



Abelian Categories, Hochschild (Co)homology and Algebraic Deformations 14

such that:

pA ◦ iA = 1A, (1.1)

pB ◦ iB = 1B, (1.2)

and
iA ◦ pA + iB ◦ pB = 1A×B. (1.3)

Let D be an additive category, then lets apply an additive functor F : C → D to
the above diagram:

F (A×C B)

F (A) F (B)

F (iA)

F (pA) F (pB)

F (iB)

We note that F respects the equations (1.1), (1.2), (1.3) thus by the uniqueness
of products (and coproducts) it holds that:

F (A×C B) ∼= F (A)×D F (B).

We have just proved:

Proposition 3. Let C, D be additive categories and A,B ∈ C. Let F : A → B
be an additive functor then:

F (A×C B) ∼= F (A)×D F (B).

Let A and B be objects in Ab and f : A → B. There are 4 objects in Ab
that describe f :

• ker(f) = {a ∈ A| f(a) = 1B}

• im(f) = {b ∈ B| ∃a ∈ A : b = f(a)}

• coker(f) = B
/
im(f)

• coim(f) = A
/
ker(f)

and we note that f can be factored as follows:

A coim(f) im(f) B
ϕ f i

where ϕ is the natural map, f is an isomorphism and i is the inclusion. We would
like to be able to define analogous objects in a general additive category.

14
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Let C be an additive category and consider its zero object 0. We consider the
following diagram:

A B

0
f g

h

The map h = g ◦ f is the zero map from A to B, we shall abuse notation and
write:

A B0

The zero map is also the identity of the group HomC(A,B) for an additive cate-
gory C and thus is preserved by additive functors.

We return to Ab and consider f : A → B for objects A,B. Consider the
following diagram:

A B
f

0

then its equalizer is exactly the kernel of f ! Similarly, its coequalizer is the
cokernel of f :

ker(f) A B coker(f)
f

0

i ϕ

Now we consider:

B coker(f)
ϕ

0

and we see that the kernel of ϕ is im(f). Finally, consider:

ker(f) A
i

0

and observe that the cokernel of i is coim(f). We recall that f is injective if
ker(f) is trivial. The kernel measures how far from an injection f is. Dually, f is
surjective if coker(f) is trivial, thus the cokernel of f measures how far f is from
being a surjection. It appears we have found a purely categorical way to define
our desired objects in a general additive category. Thus we shall proceed:

Definition 18. Let C be an additive category, f : A → B be a map between
two objects and consider the diagram:

A B
f

0

Then:

• If the limit exists, it is the kernel of f ,

• if the colimit exists, it is the cokernel of f ,

15
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• if it exists, the kernel of the cokernel is the image of f ,

• and if it exists, the cokernel of the kernel is the coimage of f .

The reader will notice that in general the above limits and colimits need not
exist, and we do not wish to be hamstrung by such a predicament. This leads us
to our next section.

1.6 Abelian Categories

These are categories that behave like Ab and will mimic many of their properties.
The axioms of an abelian category ensure that the basic objects of homological
algebra are well defined and exist. In Chapter 2 it will be seen that homologies
and cohomologies are additive functors from a particular abelian category to the
category of abelian groups.

Definition 19 (Section 1.4, [6]). Let C be an additive category. Then C is an
abelian category if and only if:

Ab 1) Any morphism admits a kernel and a cokernel.

Ab 2) All morphisms f : A → B in C can be decomposed into:

A coim(f) im(f) B
ϕ f i

where ϕ is an epimorphism, f is an isomorphism and i is a monomorphism.

Immediately we see that Ab 1 dispatches our existence issues by assumption.

Example 10 (Example 1.1.3 in [3]). The reader is likely familiar with some
examples of abelian categories:

• The category Ab is clearly abelian (given that the axioms aim to capture
its properties),

• Vectk for a field k,

• RMod for an associative unital ring R and more generally the category of
modules over an associative k-algebra for a field k.

Definition 20. Let C be an abelian category and A an object. A subobject of
A is a pair consisting of an object X and a monomorphism i : X → A that is its
inclusion into A. Dually, a quotient object of A is a pair consisting of an object
Y and an epimorphism ϕ : A → Y called its canonical map.

Often we will abuse notation and refer to the object X as the subobject and
Y as the quotient object.

Proposition 4. Let C be an abelian category and A an object. Then subobjects
of A are in one-to-one correspondence with quotient objects of A.

16
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Proof. Let X be a subobject of A. Then there exists an inclusion i : X → A
and this admits a cokernel, thus each subobject yields a quotient object. Next
suppose Y is a quotient object of A thus there exists a canonical map ϕ : A → Y
and this admits a kernel, thus each quotient object yields a subobject.

Intuitively this result tells you that a valid quotient arises out of any subobject.
This fact can be used constructively for example to produce the tensor product
in Ab and to define homology groups. We conclude this chapter with a very
powerful result.

1.7 Abelian categories are modules over some

ring

Theorem 1 (Mitchell’s embedding theorem; [3]). Every abelian category is
equivalent to a full subcategory of the category of left modules over an asso-
ciative unital ring R.

Proof. The proof of this theorem is beyond the scope of this report and we refer
the reader to [5].

This theorem has both practical and theoretical value. Theoretically it allows
us think of all abelian categories as categories of modules. Practically the theorem
lets us exploit the categorical structure of modules for proofs. In concrete terms
we will be able to make use of the elements of modules and perform diagram-chase
like proofs, as in Lemma 8. This theorem does have limitations: for example let
C be an arbitrary abelian category and D be the category of modules it embeds
into, then the projective and injective objects in C do not necessarily correspond
to projective and injective modules in D. There is also a set theoretic issue as
the original statement requires our abelian category C to be small, however all
of these issues are beyond the scope of this report and in fact all of our concrete
examples will be the category of modules over some ring.

We benefit from Theorem 1 immediately. We would like to generalise the
fact that vanishing of the kernel implies injectivity and vanishing of the cokernel
implies surjectivity, we proceed:

Lemma 2. Let C be an abelian category then:

1. A morphism f : A → B is a monomorphism if and only if its kernel is
trivial.

2. A morphism g : A → B is a epimorphism if and only if its cokernel is trivial.

Proof. We apply Theorem 1 and consider A,B to be left modules over a ring
R. We recall that a module has an underlying abelian group and that an R-
homomorphism is simply a group homomorphism that respects the R-action.
Thus our proof will be similar to the approach used for groups:

17
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1. We will prove that f : A → B is an injection if and only if ker(f) is trivial
and this will yield the desired result.
First we suppose ker(f) is trivial and ∃x, y ∈ A : f(x) = f(y) then:

0B = f(x)− f(y) = f(x− y) = f(0A) =⇒ x = y

and thus f is injective.
Next we suppose f is injective and consider x ∈ ker(f) Then:

f(a) + f(x) = f(a+ x) = f(a) =⇒ x = 0A =⇒ ker(f) = {0}

2. We shall proceed with a similar approach, proving f : A → B is a surjection
if and only if coker(f) is trivial. We argue directly from the definition of

coker(f) = B
/
im(f) . Then we observe that:

coker(f) = {0} ⇐⇒ im(f) = B ⇐⇒ f is surjective.

Lemma 3. Let f : A → B be a morphism in an abelian category C. Then f is
an isomorphism if and only if it is a monomorphism and an epimorphism.

Proof. We apply Theorem 1 and consider A,B to be left modules over a ring
R. We then note that in RMod monomorphisms are exactly injections and
epimorphisms are exactly surjections. Then we observe that an isomorphism is
exactly a bijective R-homomorphism. Thus f is an isomorphism if and only if it
is both monic and epic.

This concludes our study of what has colloquially been called “general abstract
nonsense”. In the next chapter we will define some more concrete structures as
well as the basic ideas of homological algebra.

18



Chapter 2

Some Homological Algebra

We have developed enough theory to start discussing the tools of homological
algebra. Homological algebra takes place inside abelian categories, and thus we
shall restrict our attention to categories of modules over a ring R. We will begin
with a brief study of modules, constructing their tensor product and discussing
some of its properties. Then exact sequences, chain complexes and homologies
will be defined and discussed. We finish with the duals of the above notions. Our
treatment is inspired by chapter 2 of [12] and chapter 1 of [9].

2.1 Constructing the tensor product of modules

There are many questions that could lead one to discover the tensor product.
First, suppose we have a ring R a subring S ⊆ R. One might be curious when a
module SM can be regarded as a left R-module. One might also try to avoid biad-
ditive (or multiadditive) maps and desire to only work with R-homomorphisms,
thus one seeks an object Y such that:

A⊕B Y

G

f

ϕ

∃!f̂

commutes. The tensor product is also important in a purely homological context
where they are used in the Künneth formulas, however this is beyond our scope
and we refer the reader to section 10.10 in [12]. Before we are able to answer the
above questions some theory will need to be developed.

Definition 21. Let R be a ring and AR, RB, RM be modules. Then a map
f : A ⊕ B → M is called R-biadditive if for all a, a′ ∈ A, b, b′ ∈ B and r ∈ R it

19
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satisfies:

f(a+ a′, b) = f(a, b) + f(a′, b)

f(a, b+ b′) = f(a, b) + f(a, b′)

f(ar, b) = f(a, rb).

Definition 22. Let R be a ring and S a left R-module. The module S is cyclic
if ∃g ∈ S such that ∀s ∈ S ∃r ∈ R : s = rg. We write S = ⟨g⟩ = {rg|r ∈ R} and
call ⟨g⟩ the span of g. Analogously for any subset X of a left R-module M for
some ring R we can define:

⟨X⟩ =

{∑
xi∈X

rixi|ri ∈ R, all but finitely many of them equal to 0R

}

and we call ⟨X⟩ the submodule generated by X. We say that X generates M if
⟨X⟩ ∼= M .

We denote by ⊕ the biproduct of modules and we note that in the product
of infinitely many modules we restrict our sums to be finite to avoid questions
about convergence.

Definition 23. A left R-module F is a free left R-module if it is isomorphic to
a product of copies of R, that is to say there is a (possibly infinite) indexing set
B such that:

F ∼=
⊕
b∈B

R.

The set B is called a basis of F . Free right and bimodules can be defined analo-
gously.

Example 11. For any field k all left k-modules (which are just vector spaces)
are free.

We note that for any set B there exists a free module with basis B.

Lemma 4. Let R be a ring, F be a free left R-module with basis B and M
a left R-module. Then for a function f : B → M there exists a unique R-
homomorphism f̂ : F → M such that:

F

B M
f

∃!f̂
i

commute where i : B → F is the inclusion.

Proof. Any element v ∈ F has a unique expression of the form:

v =
∑
b∈B

rbb, for rb ∈ R and all but finitely many of them equal to 0R.
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Then:
f̂(v) =

∑
b∈B

f̂(rbb) =
∑
b∈B

rbf(b)

is an R-homomorphism. It is unique since it is the only function that properly
respects scalar multiplication by R.

Theorem 5. Let R be a ring. Every left R-module M is a quotient of a free left
R-module F .

Proof. Choose a generating set X for M and let F be the free left R-module with
basis X. Then by Lemma 4 there exists an R-homomorphism f̂ : F → M that
with f̂(x) = x ∀x ∈ X. It holds that f̂ is a surjection since im(f̂) = ⟨X⟩ ∼= M
since X generates M by assumption.

This result is pleasant in the sense that we are able to uniquely specify any left
R-module in terms of generators and relations. We will use this fact to construct
the tensor product.

Definition 24. Let R be a ring and AR, RB be modules. Then their tensor
product is an R-module A⊗R B and an R-biadditive map:

ϕ : A⊕B → A⊗R B

such that for every R-moduleM and every R-biadditive map f : A⊕B → M there
exists a unique R-homomorphism f̂ such that the following diagram commutes:

A⊕B A⊗R B

M

f

ϕ

∃!f̂ (2.1)

Now we prove their uniqueness:

Theorem 6. Let R be a ring and AR, RB be modules and suppose there are two
tensor products T, T ′ of A and B. Then T ∼= T ′.

Proof. We proceed as in [8]: first we note that given an R-biadditve map f :
A⊕B → M there exists a unique R-homomorphism f̂ such that the diagram 2.1
commutes. Now we consider the commutative diagram:

A⊕B

T T ′ T

ϕ
ϕ′ ϕ

j j′

and since ϕ′ is biadditive we get a unique R-homomorphism j : T → T ′, similarly
we also get a unique R-homomorphism j′ : T ′ → T . Since the the diagram
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commutes we have that ϕ = (j′ ◦ j) ◦ ϕ. By the uniqueness of ϕ we have that
(j′ ◦ j) = 1T , a similar diagram shows that (j ◦ j′) = 1T ′ and hence T ∼= T ′. We
conclude the the tensor product is unique up to isomorphism.

We have now earned the right to speak of the tensor product of two modules.
Now we need to prove that it exists:

Theorem 7. Let R be a ring and AR, RB be modules. Then their tensor product
exists.

Proof. We consider the free R-module F with basis A×B - the set. We produce
the submodule N generated by elements of the form:

(a+ a′, b)− (a, b)− (a′, b) (2.2)

(a, b+ b′)− (a, b)− (a, b′) (2.3)

(ar, b)− (a, rb) (2.4)

for a, a′ ∈ A, b, b′ ∈ B and r ∈ R. Then the quotient F /N is the tensor product.
We have the following commutative triangle:

F

A⊕B F /N

π
f

ϕ

where:

• π : F → F /N is the natural map,

• f : F → A ⊕ B is the unique extension of the map that sends (a, 0B) 7→
(a, 0B) for all a ∈ A and (0A, b) 7→ (0A, b) for all b ∈ B,

• ϕ : A⊕ B → F /N = A⊗R B that maps (a, b) 7→ a⊗b and is R-biadditive.
This map is a surjection, and it is unique by the uniqueness of f and π.

The quotient satisfies the required properties of the tensor product because
of the relations imposed by the generators of N .

Let us unpack this. First we note that no checks had to be made to form
the quotient, this is due to Proposition 4. The simplest example concerns vector
spaces, thus let k be a field and consider two vector spaces V,W over k with bases
{ei}ni=1 and {aj}mj=1 respectively. Then V ⊗k W is a k-vector space of dimension
n×m, we denote it:

V ⊗k W =

{∑
i,j

ri,jei⊗aj|ri,j ∈ R all but finitely many of them equal to 0k

}
.
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For v, v′ ∈ V,w,w′ ∈ W and r ∈ k we note the following:

(v + v′)⊗w = v⊗w + v′⊗w by 2.2,

v⊗(w + w′) = v⊗w + v⊗w′ by 2.3,

(vr)⊗w = v⊗(rw) by 2.4.

For a module over an arbitrary ring the above relations hold by definition but
we cannot make a statement about their basis since in general only free modules
have bases. The subscript k of the tensor product denotes that we can move
scalars from k across the product. The relations ensure that R-homomorphisms
out of the tensor product behave like R-biadditive maps out of the direct product.
Something interesting has happened here, we have managed to “hide” the com-
plexity of biadditive maps inside of the tensor product of the modules involved.
It turns out it is often more convenient to have complicated objects and simple
morphisms, as it is often the morphisms that are being attended to. We are now
equipped to answer our question about modules over subrings. Let R be a ring
and S ⊆ R a subring. Then suppose we have modules RAS, SB and we wish to
regard SB as a left R-module. We form the tensor product:

RA⊗S B

and note that this is equipped with a left R-action. Then we recall that R can
be regarded as an (R, S)-bimodule and thus we can always form:

R⊗S B

and this will have a left R-module structure.

Next we do some housekeeping:

Proposition 5. Let R be a ring AR, RBR, RC be modules. Then:

(A⊗R B)⊗R C ∼= A⊗R (B ⊗R C),

that is to say the tensor product is associative up to isomorphism.

Proof. See proposition 2.57 in Section 2.2 of [12].

Example 12. The tensor product can be a bit more complex than initially meets
the eye.

• Let R be a ring and RM a module, then R ⊗R M ∼= M , this is due to the
fact that:

r⊗m = 1⊗rm

thus we produce the isomorphism:

ϕ : R⊗R M → M

r⊗m 7→ rm.
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• We consider the left Z-modules Z /2Z and Z /3Z . We note that multipli-
cation by 2 produces an automorphism of Z /3Z and consider:

Z /2Z⊗ZZ /3Z = Z /2Z⊗Z2
(Z /3Z

)
=
(Z /2Z

)
2⊗ZZ /3Z = {0}⊗ZZ /3Z = {0}

where {0} denotes the trivial group.

We recall that by Proposition 1 that our definition applies to abelian groups.
We shall now introduce a generalisation of the tensor product of modules that
will be necessary when we study Hochschild (co)homology in Chapter 3.

Definition 25. Let R be a commutative ring. A left R-module A is a unital
algebra over R if it is a unital (possibly non-associative) ring in its own right and
its multiplication is compatible with the R-action. That is to say for r ∈ R, a, b ∈
A we have:

r(ab) = (ra)b = a(rb).

All algebras in this report shall be unital and thus we shall drop the term. It is
notable that the definition does not demand associativity and indeed in Chapter 4
we will see a non-associative algebra. We observe that the definition of an algebra
can be shown to imply that R ⊆ A. The challenge is how to define (ar) for r ∈ R
and a ∈ A since A is a left R-module. We say that (ar) = (ra) and note that
multiplication in R is compatible with multiplication in A by definition. By the
axioms of a ring we have that R is closed under multiplication and subtraction.
We conclude that not only is R a subring of A but it is actually a subring of
Z(A) the centre of A. This gives us the right to consider the ring homomorphism

i
Z(A)
R : R → A which is the inclusion of R into Z(A).

Example 13. Let R be a commutative ring:

• the polynomial ring R[x] is an R-algebra. For any R-algebra A polynomials
over A also form an R-algebra.

• left free R-modules can be equipped with element-wise multiplication and
then can be regarded as an R-algebra.

• n× n matrices with entries in R have a ring structure compatible with an
action of R and thus also can be regarded as an R-algebra.

We now extend the tensor product to algebras:

Definition 26. Let R be a commutative ring and A,B be R algebras. Their
tensor product of modules A⊗R B can be endowed with the multiplication rule:

(a⊗b)(a′⊗b) = (aa′)⊗(bb′)

and thus can be regarded as a module. This new tensor product is the tensor
product of algebras.
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In Chapter 3 we shall be concerned with tensor powers of algebras. We fix a
ring R and consider an R-algebra A. Then:

A⊗Rn = A⊗R A⊗R · · · ⊗R A with n factors.

We also note that any R-algebra A raised to the tensor power of 0 returns R.

2.2 Exact sequences and chain complexes

The following all applies in a general abelian category but this report is only
concerned with categories of modules and thus we fix a ring R and consider

RMod. Here we introduce the primary tools of homological algebra.

Definition 27. Let {Cn}n∈Z be a set of modules in RMod. The sequence bellow
is exact if ker(∂n) = im(∂n+1)

. . . Cn+1 Cn Cn−1 . . .
∂n+1 ∂n∂n+2 ∂n−1

for all n ∈ Z. Let A,B,C be 3 objects in RMod. The following exact sequence
is called a short exact sequence:

0 A B C 0
f g

The object B is called an extension of A by C.

It is immediate that ∂n ◦ ∂n+1 = 0 for all n. This condition will turn out to
be extraordinarily important.

Proposition 6. We consider objects A,B in an abelian category C:

1. A sequence 0 → A
f−→ B is exact if and only if f is a monomorphism.

2. A sequence A
g−→ B → 0 is exact if and only if g is an epimorphism.

3. A sequence 0 → A
f−→ B → 0 is exact if and only if f is an isomorphism

Proof. We shall appeal to Theorem 1 and regard A,B as left modules of some
ring R.

1. We note exactness implies that ker(f) = {0} and thus by Lemma 2 f is a
monomorphism.

2. In this case exactness implies that im(g) = ker(0) = B and thus by Lemma
2 g is an epimorphism.

3. All subsequences of exact sequences are exact, thus f is monic by part 1,
epic by part 2 and thus by Lemma 3 f is an isomorphism.
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Example 14. In Ab we can form the following sequence:

0 Z Z Z /2Z 0
×2 ϕ

We check its exactness. There is only one map 0 → Z and its image 0 ∈ Z must
be the kernel of the map Z → Z. Thus we must expect the map Z → Z to be an
injection (which it is). Similarly there is only one map Z /2Z → 0 and its kernel
must be the image of ϕ. Thus we expect ϕ to be a surjection, which it is since it
is the natural map Z → Z /2Z . We also note the kernel of ϕ is exactly 2Z.

Definition 28. Consider a tuple C• := ({Cn}n∈Z, {∂n}) where {Cn}n∈I is a set
of modules in RMod and each ∂n : Cn → Cn−1 is a morphism in RMod. Then
C• is a chain complex in RMod if:

∂n ◦ ∂n+1 = 0

for all n ∈ I. The morphisms {∂n} are called boundary maps.1 We call a chain
complex non-negative if Cn = 0 for n < 0.

It is again immediate that im(∂n−1) ⊆ ker(∂n). A chain complex can be
viewed as a Z-shaped diagram in an abelian category with the added condition
that ∂n ◦ ∂n+1 = 0 for all n. We notice that this is a generalisation of an exact
sequence.

We can measure how far from exact a sequence is:

Definition 29. Let C• be a chain complex in RMod. The nth homology of C• is
the quotient:

Hn(C•) := ker(∂n)
/
im(∂n+1) regarded as an abelian group.

We introduce some terminology:

• the elements of ker(∂n) ⊆ Cn are called n-cycles and are denoted Zn,

• the elements of im(∂n+1) ⊆ Zn ⊆ Cn are called n-boundaries and are de-
noted Bn.

We can thus also write:
Hn(C•) = Zn

/
Bn

,

and denote h ∈ Hn(C•) as z +Bn for some z ∈ Zn.

Definition 30. Let C•, D• be chain complexes in C. Then a chain map

f : C• → D•

1This name has a topological origin, being a map from a topological space to its boundary.
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is a family of maps fn : Cn → Dn such that the following square commutes

Cn Cn−1

Dn Dn−1

∂n

∂′
n

fn fn−1

for all n ∈ Z.

We note that the commutativity of the square implies that cycles in Cn get
mapped to cycles in Dn. This can be seen by considering a cycle x ∈ Cn and
noting that ∂n(x) = 0Cn−1 and thus fn−1(∂n(x)) = 0Dn−1 since fn−1 is an R-
homomorphism. Then commutativity implies

∂′
n(fn(x)) = 0Dn

and thus fn(x) is a cycle in Dn. We note a similar argument holds for boundaries
in Cn.

Definition 31. For RMod we can produce the category Ch•(RMod) of chain
complexes in C. Its objects are chain complexes in RMod and its morphisms are
chain maps. Since chain maps are just families of morphisms in RMod it follows
that composition is well defined and associative.

Proposition 7 ([12]). The category Ch•(RMod) is abelian.

Proof. This is Proposition 5.100. in Section 5.5 of [12].

Since Ch•(RMod) is abelian it must have a zero object, this is the complex
({0}, {0n : 0 → 0}n∈Z) where 0 is the trivial R-module.

Proposition 8. A chain map f : C• → D• induces maps:

f ∗
n : Hn(C•) → Hn(D•).

Proof. We denote by ϕCn the natural map Cn → Hn(C•) and similarly we have
ϕDn : Dn → Hn(D•) then we wish to produce a map f ∗

n such that the diagram
commutes:

Cn Hn(C•)

Dn Hn(D•)

fn f∗
n

ϕCn

ϕDn

this can be achieved by defining:

f ∗
n : Hn(C•) → Hn(D•)

z 7→ f(z).
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This is equivalent to:

f ∗
n : Hn(C•) → Hn(D•)

ϕCn(c) 7→ ϕDn(fn(c)) for c ∈ Cn.

We note that for a cycle z ∈ Cn its image fn(z) is also a cycle, furthermore
f ∗
n(z) is independent of choice of representative. Thus the map f ∗

n is well defined
and a group homomorphism.

Definition 32. Let f : C• → D• be a chain map. Then f is called a quasi-
isomorphism if each f ∗

n is an isomorphism.

Definition 33. Let f, g : C• → D• be chain maps. Then we define a chain
homotopy

h : f → g

as the family of morphisms:

hn : Cn → Dn+1

such that:
∂′
n+1 ◦ hn + hn−1 ◦ ∂n = f − g

for all n ∈ Z. Diagrammatically:

Cn+1 Cn Cn−1

Dn+1 Dn Dn−1

∂n

∂′
n

fn fn−1fn+1

∂n+1

∂′
n+1

hn hn−1 (2.5)

We say f is chain homotopic to g or f ≃ g if there exists a chain homotopy
h : f → g.

We note that a chain homotopy h does not make diagram 2.5 commute.
Chain homotopies have a very useful property:

Lemma 8. Let f, g : C• → D• be chain maps. If f ≃ g then the induced maps

f ∗
n = g∗n

for all n ∈ Z.

Proof. We consider diagram 2.5 and the module Cn. Since our statement regards
the induced maps it suffices for us to only consider the n-cycles and n-boundaries.
Let x be an n-cycle then:

fn(x)− gn(x) = (hn−1 ◦ ∂n)(x) + (∂n+1 ◦ hn)(x)

= (∂n+1 ◦ hn)(x)
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and we observe hn(x) is either in ker(∂n+1) or not. Thus (∂n+1 ◦hn)(x) is either 0
or an n-cycle. We notice that fn and gn differ by at most a boundary and recall
that

Hn(C•) = Zn
/
Bn

hence fn and gn agree on all equivalence classes of cycles and therefore f ∗
n = g∗n.

Since our argument places no significance on the chosen n the result has been
proved.

Lemma 9. Let C• be a chain complex, if 1C• ≃ 0 then C• is exact.

Proof. Since 1C• ≃ 0 by Lemma 8 we have that:

0∗n = 1∗n

as maps:
0∗n, 1

∗
n : Hn(C•) → Hn(C•).

It is only possible for the zero map to agree with the identity map if the object
itself is the zero object. Thus all the homologies vanish and C• is exact.

Proposition 9. We can regard Hn(□) as an additive functor. We write its
signature

Hn(□) : Ch•(RMod) → Ab.

Proof. Due to the definition of Hn(□) we only need to extend the definition to
morphisms and verify functoriality. From Proposition 8 there exists a morphism
f ∗
n : Hn(C•) → Hn(D•) and thus we can make the assignment Hn(f) = f ∗

n. The
composition of these morphisms will inherit from composition in Ab and thus be
associative. Finally if f = 1C• then it is clear that Hn(1C•) = 1Hn(C•). Thus Hn

is a functor. In order to prove additivity we must show that for any two chain
complexes C•, D• that the map induced by Hn(□):

HomCh•(RMod)(C•, D•) → HomAb(Hn(C•), Hn(D•))

is a group homomorphism. We consider the module Cn and the nth component
of two chain maps f, g : C• → D•. Then for all c ∈ Cn:

Hn(f + g)(c) = (f ∗
n + g∗n)(c) = f ∗

n(c) + g∗n(c) = Hn(f)(c) +Hn(g)(c)

and we conclude that Hn(□) is an additive functor.

2.3 Duality

We now define some notions that are dual to that of our previous section.

Definition 34. Consider a tuple C• := ({Cn}n∈Z, {∂n}) where {Cn}n∈I is a set
of modules in RMod and each ∂n : Cn → Cn+1 are morphisms in RMod. Then
C• is a cochain complex in RMod if:

∂n+1 ◦ ∂n = 0

29



Abelian Categories, Hochschild (Co)homology and Algebraic Deformations 30

for all n ∈ I. The morphisms {∂n} are called coboundary maps.

Diagrammatically a cochain complex is depicted:

. . . Cn−1 Cn Cn+1 . . .∂n−2 ∂n−1 ∂n ∂n+1

The reader will notice the contrast between a cochain complex and a chain
complex. In a cochain complex the index counts up and is denoted as a super-
script, whereas in a chain complex the index counts down and is denoted as a
subscript. The notation is designed to keep the reader informed and we shall to
conform to this convention. It is also important to note that the cochain complex
appears to simply have it arrows “going the other way”. This is true and in
fact there is no concrete difference between Definition 28 and a cochain complex.
However once we fill in some details and work with specific complexes they will
be different. This will be demonstrated in Chapter 3.

Definition 35. Let C• be a cochain complex in RMod. The nth cohomology of
C• is the quotient:

Hn(C•) := ker(∂n)
/
im(∂n−1) regarded as an abelian group.

We introduce some terminology:

• the elements of ker(∂n) ⊆ Cn are called n-cocycles and are denoted Zn,

• the elements of im(∂n−1) ⊆ Zn ⊆ Cn are called n-coboundaries and are
denoted Bn.

We can thus also write:
Hn(C•) = Zn

/Bn ,

and denote h ∈ Hn(C•) as z +Bn for some z ∈ Zn.

The notation again serves to inform the reader. We notice this definition does
not differ very much from that of the homologies of a chain complex and that all
of the theory developed in the previous section regarding chain maps and chain
homotopies are also true for cochain complexes.
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Chapter 3

Hochschild (Co)homology

In the previous chapter we defined the homology of a complex - this is a very
general idea. In this chapter we present a particular homology theory. Hochschild
(co)homology is concerned with associative algebras (Definition 25). The idea is
that to each algebra we can canonically assign a complex and from there we can
calculate homology and cohomology groups. These groups will contain important
and useful information about the algebra. We will see them to be particularly
useful in Chapter 4. We will follow the treatment of Hochschild (co)homology
given in chapter 1 of [9]. We begin by defining the Hochschild complex and
cocomplex of an algebra. Then we will characterise the lower homology and
cohomology groups and present some concrete calculations.

3.1 Hochschild complexes

Throughout this section we shall fix a commutative ring k and a unital associative
algebra A over k. Henceforth ⊗ will be used to denote ⊗k. We consider an A-
bimodule M . First we note that M is also a k-bimodule. This is due to the ring
homomorphism i

Z(A)
k : k → A. Since A acts on M we can define an action of k

as follows:

k ×M → M

(α,m) 7→ i
Z(A)
k (α)m

and similarly for a right action. Now we define:

Cn(A,M) := M ⊗ A⊗n (3.1)

Each Cn(A,M) is an A-bimodule. For the sake of notation was shall denote an
element m⊗a1⊗a2⊗ . . . ⊗an ∈ Cn(A,M) as (m, a1, . . . , an) following the convention
used in [9]. We now define nth the Hochschild boundary map, let:
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d0(m, a1, . . . , an) := (ma1, a2, . . . , an)

di(m, a1, . . . , an) := (m, . . . , aiai+1, . . . , an) 1 ≤ i < n

dn(m, a1, . . . , an) := (anm, a1, . . . , an−1)

and note that each di is a map Cn(A,M) → Cn−1(A,M). Then the nth the
Hochschild boundary map is given by:

∂n : Cn(A,M) → Cn−1(A,M)

(m, a1, . . . , an) 7→
n∑

j=0

(−1)jdj(m, a1, . . . , an).

Example 15. We show some computations:

• We start with ∂1 : C1(A,M) → C0(A,M). For (m, a) ∈ M we compute:

∂1(m, a) = ma− am

and thus im(∂1) = ⟨ma− am| a ∈ A, m ∈ M⟩ ⊆ M .

• ∂2 : C2(A,M) → C1(A,M). For (m, a1, a2) ∈ C2(A,M) we compute:

∂2(m, a1, a2) = (ma1, a2)− (m, a1a2) + (a2m, a1)

and thus

im(∂2) = ⟨(ma1, a2)− (m, a1a2) + (a2m, a1)| a1, a2 ∈ A, m ∈ M⟩ ⊆ M⊗A.

• ∂3 : C3(A,M) → C2(A,M). For (m, a1, a2, a3) ∈ C3(A,M) we compute:

∂3(m, a1, a2, a3) = (ma1, a2, a3)−(m, a1a2, a3)+(m, a1, a2a3)−(a3m, a1, a2).

Proposition 10. Let {∂n} be a set of Hochschild boundaries, then ∂n ◦ ∂n+1 = 0
for all n.

Proof. We fix an n and verify that:

di ◦ dj = dj−1 ◦ di for 0 ≤ i < j ≤ n. (3.2)
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We compute:

di ◦ dj(m, a1, . . . , an) =


di(m, a1a2, . . . , an) j = 1

di(m, . . . , ajaj+1, . . . , an) 1 < j < n

di(anm, a1, . . . , an−1) j = n

=



(ma1a2, a3, . . . , an) i = 0, j = 1

(ma1, . . . , ajaj+1, . . . an) i = 0, 1 < j < n

(anma1, a2, . . . , an−1) i = 0, j = n

(m, . . . , aj−1ajaj+1, . . . an) 0 < i = j − 1, 1 < j < n

(m, . . . , aiai+1, . . . , ajaj+1, . . . an) 0 < i < j − 1, 1 < j < n

(anm, . . . , aiai+1, . . . , an−1) 0 < i < n, j = n

(3.3)

and

dj−1 ◦ di(m, a1, . . . , an) =

{
dj−1(ma1, a2, . . . , an) i = 0

dj−1(m, . . . , aiai+1, . . . , an) 0 < i < n

=



(ma1a2, a3, . . . , an) i = 0, j = 2

(ma1, . . . , aj−1aj, . . . an) i = 0, 2 < j < n

(anma1, a2, . . . , an−1) i = 0, j = n

(m, . . . , aj−2aj−1aj, . . . an) 0 < i = j − 1, 1 < j < n

(m, . . . , aiai+1, . . . , aj−1aj, . . . an) 0 < i < j − 1, 2 < j < n

(anm, . . . , aiai+1, . . . , an−1) 0 < i < n, j = n.

(3.4)

We first compare (3.3) and (3.4) for the cases dependent on j. We note that in
(3.4) the value of j is reduced by 1 but it is quantified over a range that begins
at a value 1 greater than that of (3.3), thus both compositions agree in the cases
with a dependence on j. In the cases where there is no dependence on j both
compositions also agree, thus we conclude that di◦dj = dj−1◦di for 0 ≤ i < j ≤ n.
We observe that the sum:

∂n ◦ ∂n+1 =
n∑

i=0

di ◦
n+1∑
j=0

dj =
∑

0≤i≤n
0≤j≤n+1

(−1)i+jdi ◦ dj
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splits into two parts depending on whether i < j or i ≥ j. Thus:∑
0≤i≤n

0≤j≤n+1

(−1)i+jdi ◦ dj =
∑

0≤i<j≤n+1

(−1)i+jdi ◦ dj +
∑
n≥i≥j

(−1)j−1+idj−1 ◦ di

=
∑

0≤i<j≤n+1

(−1)i+jdj−1 ◦ di −
∑
n≥i≥j

(−1)i+jdj−1 ◦ di

= 0.

Since our argument was independent of n the claim has been proved.

We are ready to define the Hochschild complex as follows:

Definition 36 (Section 1.1 in [9]). We require the data of a k-algebra A and
an A-bimodule M . Then the Hochschild complex of A with coefficients in M is
non-negative chain complex:

C•(A,M) = ({Cn(A,M) = M ⊗ A⊗n}, {∂n : Cn+1(A,M) → Cn(A,M)})

where each ∂n is the nth Hochschild boundary.

. . . M ⊗ A⊗2 M ⊗ A M 0
∂1∂2∂3 ∂0

We are particularly interested in the case where M = A and then obtain the
complex:

. . . A⊗3 A⊗2 A 0
∂1∂2∂3 ∂0

which we shall denote as C•(A) = C•(A,A).

Definition 37. The nth Hochschild homology group of A with coefficients in M ,
denoted HHn(C•(A,M)) is the nth homology group of the complex C•(A,M).
That is to say

HHn(C•(A,M)) = ker(∂n)
/
im(∂n+1) .

In the case where A = M we write HHn(A) = HHn(C•(A)).

We recall Proposition 9, it implies that HHn(□) is an additive functor from
the category of Hochschild complexes and chain maps to the category of abelian
groups. We attend to the case where M = A because it provides for clear inter-
pretations of the Hochschild homology groups.

From the Hochschild complex we can construct the Hochschild cocomplex:

Definition 38 (Section 1.5 in [9]). We require the data of a k-algebra A and
an A-bimodule M . We define Cn(A,M) := Hom(A⊗n,M) in the category of
A-bimodules. The coboundary map

∂n : Cn(A,M) → Cn+1(A,M)

is defined as follows, for:
f : A⊗n → M
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we define
∂n(f) := −(−1)nf ◦ ∂n.

The Hochschild cocomplex of A with coefficients in M is the non-negative cochain
complex C•(A,M) = ({Cn(A,M) = Hom(A⊗n,M)}, {∂n}) where each ∂n is the
nth Hochschild coboundary.

0 C0(A,M) C1(A,M) C2(A,M) . . .∂0 ∂1 ∂2

Again we are particularly interested in the case where M = A and then obtain
the complex:

0 Hom(k,A) Hom(A,A) Hom(A⊗2, A) . . .∂0 ∂1 ∂2

which we shall denote as C•(A,A) = C•(A).
We shall unpack the definition, beginning with how the Hochschild cobound-

ary is defined. Suppose we have an A-homomorphism f : A⊗n → M and we wish
to produce a new A-homomorphism A⊗n+1 → M . Then we can precompose with
the Hochschild boundary to get an element of A⊗n and then apply f since that
is its domain. This precomposition may be reminiscent of the contravariant hom
functor from Example 5 and indeed this is because of the definition of Cn(A,M).
The fact that C•(A) is a complex is due to C•(A) being a complex, in particular
that ∂n ◦ ∂n+1 = 0.

Example 16. We show some computations of ∂n:

• We start with ∂0 : C0(A,M) → C1(A,M). We observe that C0(A,M) =
Hom(k,M) ∼= M . This is because A-homomorphisms out of k are deter-
mined by where 1 ∈ k is sent, we get a choice for each m ∈ M and hence
Hom(k,M) ∼= M . Thus ∂0 takes an element m ∈ M as input and returns
a morphism (∂0m) : A → M . It is defined as follows:

(∂0m)(a) = am−ma.

• Next we compute ∂1 : C1(A,M) → C2(A,M) which takes a morphism
f : A → M and returns a morphism (∂1f) : A⊗2 → M defined as follows:

(∂1f)(a1a2) = a1f(a2)− f(a1a2) + f(a1)a2.

• Finally we show ∂2 : C2(A,M) → C3(A,M) which extends a morphism
f : A⊗2 → M to a morphism (∂2f) : A⊗3 → M . It is defined as:

(∂2f)(a1, a2, a3) = a1f(a2, a3)− f(a1a2, a3) + f(a1, a2a3)− f(a1, a2)a3.

Definition 39. The nth Hochschild cohomology group of A with coefficients in M ,
denoted HHn(C•(A,M)) is the nth cohomology group of the complex C•(A,M).
That is to say

HHn(C•(A,M)) = ker(∂n)
/
im(∂n−1) .
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In the case where A = M we write HHn(A) = HHn(C•(A)).

We conclude this section with the statement of a powerful result.

Theorem 10 (Morita Invariance, section 1.5.6 in [9]). Let k be a commutative
ring and A a k-algebra. For an A-bimodule M these exists an isomorphism:

HHn(C•(A,M)) → HHn(C•(Mr(A),Mr(M))

for each r ∈ N and each n ∈ {0} ∪ N where Mr(A) denotes the algebra of r × r
matrices over A.

The proof of this theorem is beyond the scope of this report.

3.2 Derivations

We will now have a brief interlude introducing derivations of rings. We will follow
the treatment in section 1 of [7].

Definition 40. Let R be a ring. A map d : R → R is a derivation if d is additive
and satisfies Leibnitz’ rule. That is to say for a, b ∈ R d satisfies:

• d(a+ b) = d(a) + d(b),

• d(ab) = ad(b) + d(a)b.

Example 17. The motivating example is the differential operator on a poly-
nomial algebra. We consider the algebra R[x] and note its elements are of the
form

∞∑
i=0

aix
i

where all but finitely many of the coefficients ai = 0. We define the derivation:

d : R[x] → R[x]
∞∑
i=0

aix
i 7→

∞∑
i=0

iaix
i−1.

Definition 41. Let R be a ring. We define the commutator of two elements
a, b ∈ R to be [a, b] := ab− ba.

Proposition 11. Let R be a ring. For a, b, c ∈ R it holds that

[ab, c] = a[b, c] + [a, c]b.

Proof. We proceed by direct computation:

a[b, c] + [a, c]b = a(bc− cb) + (ac− ca)b = abc− cab = [ab, c].
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In non-commutative rings there is another class of examples of derivations.

Example 18. Let R be a non-commutative ring and let a ∈ R. We define:

da : R → R

r → [r, a]

and we verify this is a derivation. First we check additivity:

da(r+s) = [r+s, a] = (r+s)a−a(r+s) = (ra−ar)+(sa−as) = [r, a]+[s+a] = da(r)+da(s).

Next we check Leibnitz’ rule:

da(rs) = [rs, a] = r[s, a] + [r, a]s = rda(s) + da(r)s.

We will call derivations of the form da for some a ∈ d inner derivations of R.

Proposition 12. Let R be a ring, then the sum of two derivations will be a
derivation.

Proof. Suppose we have f, g : R → R are derivations and let r, s ∈ R. We show
f + g is additive:

(f+g)(r+s) = f(r+s)+g(r+s) = f(r)+g(r)+f(s)+g(s) = (f+g)(r)+(f+g)(s).

We verify that Leibnitz’ rule is satisfied:

(f + g)(rs) = f(rs) + g(rs) = rf(s) + f(r)s+ rg(s) + g(r)s

= r(f(s) + g(s)) + (f(r) + g(r))s

= r(f + g)(s) = (f + g)(r)s.

For a ring R we will make use of the following notation:

• We denote the set of inner derivations R → R by Inn(R). Due to Proposi-
tion 12 this set can be endowed with the structure of an abelian group with
the addition inheriting from that of R and the identity being the zero map
R → R.

• We denote the set of derivations R → R by Der(R). Similar to above this
set can also be regarded as an abelian group.

3.3 Characterisations of the lower Hochschild

(co)homology groups

3.3.1 Homology groups

Let A be a k-algebra. Then we consider the Hochschild chain complex C•(A):

. . . A⊗3 A⊗2 A 0
∂1∂2∂3 ∂0
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and we wish to calculate its homologies.

• HH0(A) : We only need to compute im(∂1) since ker(∂0) = A. We recall

∂1(a1, a2) = a1a2 − a2a1

thus
im(∂1) = {[a1, a2]| a1, a2 ∈ A} = [A,A]

so we conclude that
HH0(A) = A

/
[A,A]

the abelianization of A.

• For a commutative algebra A it can be shown that HH1(A) = Ω1
A|K the

A-module of Kähler differentials. This is both not the focus and beyond
the scope of this report and is discussed in Proposition 1.1.10 in [9].

3.3.2 Cohomology groups

Let A be a k-algebra. Then we consider the Hochschild cochain complex C•(A):

0 Hom(k,A) Hom(A,A) Hom(A⊗2, A) . . .∂0 ∂1 ∂2

and we wish to calculate its cohomologies.

• HH0(A) : We only need to compute ker(∂0). We observe:

(∂0a1)(a2) = a2a1 − a1a2

thus
ker(∂0) = Z(A)

so we conclude that
HH0(A) = Z(A).

• HH1(A) : We will need to calculate both im(∂0) and ker(∂1). We note from
the previous case that

im(∂0) = Inn(A).

Now we recall that ∂1 extends a map from A to a map from A ⊗ A. We
compute:

(∂1f)(a1, a2) = a1f(a2)− f(a1a2) + f(a1)a2

hence:

ker(∂1) = {f ∈ Hom(A,A)| f(a1a2) = a1f(a2) + f(a2)a1∀ a1, a2 ∈ A}

thus ker(∂1) = Der(A). We conclude that:

HH1(A) = Der(A)
/
Inn(A) .
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In Chapter 4 we will see the influence of HH2(A) and HH3(A) on deformation
theory.

3.4 Explicit Calculations of Cohomology

In this section we will calculate some Hochschild cohomology groups of algebras.

3.4.1 Field

We fix a field k and will consider the case A = M = k. This case is degenerate
however it is a good baseline and will be used for later computations. We will
consider the complex:

0 Hom(k, k) Hom(k, k) Hom(k⊗2, k) . . .∂0 ∂1 ∂2

• HH0(k) : The kernel of ∂0 is k since fields are commutative and thus
HH0(k) = k.

• HH1(k) : We note that the image of im(∂0) is trivial. We consider f : k → k
and compute:

(∂1f)(k1, k2) = k2f(k1)− f(k1k2) + f(k1)k2.

We note that (∂1f) ∈ Hom(k⊗2, k) is bilinear in its 2 arguments. Since k is
a field it is sufficient to consider:

(∂1f)(1, 1) = f(1)− f(1) + f(1) = f(1) (3.5)

because:
(∂1f)(k1, k2) = k1k2(∂

1f)(1, 1). (3.6)

We note that f(1) ̸= 0 and therefore (3.5) never vanishes, thus the kernel
of ∂1 is trivial. We conclude that

HH1(k) = {0} the trivial group.

• HH2(k) : The image of ∂1 is k by a similar argument used in Example
16. We consider f : A⊗2 → A and again only consider where the unit is
mapped:

(∂2f)(1, 1, 1) = f(1, 1)− f(1, 1) + f(1, 1)− f(1, 1) = 0

hence all maps are in the kernel of ∂2. Thus:

HH2(k) = ker(∂2)
/
im(∂1) = k /k = {0}.
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The complex we started with is isomorphic (as a chain complex) to:

0 k k k . . .∂0 ∂1 ∂2

since M ⊗k k ∼= M for k-modules as shown in Example 12 and thus is a non-
standard example.

3.4.2 2× 2 matrices over a field

We will fix a field k and will consider the case A = M = M2(k). We will apply
Theorem 10 and it immediately yields:

• HH0(M2(k)) ∼= k,

• HH1(M2(k)) ∼= {0},

• HH2(M2(k)) ∼= {0}.

3.4.3 The group algebra C[C3]

We the cyclic group of order 3 as C3 = {e, g, g2} where e denotes the identity.
Then we recall the group algebra is the algebra of formal sums of elements of C3:

C[C3] = {c0e+ c1h+ c2g
2| c0, c1, c2 ∈ C}

with additions defined element wise and multiplication defined as:

(a0e+ a1g + a2g
2)(b0e+ b1g + b2g

2) =(a0b0 + a1b2 + a2b0)e

+(a0b1 + a1b0 + a2b2)g

+(a0b2 + a1b1 + a2b0)g
2.

We note we only need to compute the values of (∂nf) on the basis elements e, g, g2

because of linearity and we note that e is the multiplicative identity. We consider
the complex:

0 Hom(C,C[C3]) Hom(C[C3],C[C3]) . . .∂0 ∂1

• HH0(C[C3]) = C[C3] since it is a commutative algebra.

• HH1(C[C3]) : We note that the image of ∂0 is trivial thus we only have to
compute ker(∂1). We consider f : C[C3] → C[C3] and will determine the
conditions implying f ∈ ker(∂1). We consider f in ker(∂1) and compute:

(∂1f)(e, g) = ef(g)− f(g) + f(e)g

= ef(g)− ef(g) + f(e)g

= f(e)g

which yields the relation:
f(e)g = 0. (R1)
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We continue:

(∂1f)(g, g) = gf(g)− f(g2) + f(g)g

= 2gf(g)− f(g2)

which yields the relation:

2gf(g) = f(g2). (R2)

We compute:

(∂1f)(g, g2) = gf(g2)− f(e) + f(g)g2

= 3g2f(g)− f(e) using (R2)

which yields the relation:

3g2f(g) = f(e). (R3)

We substitute (R3) into (R1) we obtain:

3g2f(g)g = 0

⇐⇒ 3ef(g) = 0

and this yields that ef(g) = 0. Since e is the multiplicative identity in C[C3]
we see that f(g) = 0. By (R2) and (R3) we have that f(e) = f(g2) = 0.
Thus ker(∂1) = {0}. Finally we observe that

HH1(C[C3]) = {0}
/
{0} = {0}.

From this we can conclude that all derivations of C[C3] are inner.
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Chapter 4

Algebraic Deformation Theory

4.1 Introduction

In this chapter we will present a brief account of the theory of deformations of
algebras. We will highlight the influence of Hochschild cohomology on the subject.
We shall culminate with the presentation of a novel method to produce complex
nilpotent algebra that deforms into a given finite dimensional unital algebra. We
shall follow the treatment in [4]. All algebras will be over some commutative
ring k that will not change and thus all tensor products will be tensor over k
and all hom-sets will be the set of k-module homomorphisms between two k-
algebras, which we shall denote Homk. Furthermore for any algebra A we will
only consider the Hochschild cocomplex C•(A), that is the Hochschild cocomplex
of A with coefficients in A.

4.2 Ring multiplication as a bilinear map

Let (R,+,×) be a ring. Then it holds that × is given by some map

F : R⊗R R → R.

We recall that the ring axioms demand that for r, b, c ∈ R:

r × (a+ b) = r × a+ r × b

(a+ b)× r = a× r + b× r

and we notice that F also satisfies these conditions:

F (r, a+ b) = F (r, a) + F (r, b)

F (a+ b, r) = F (a, r) + F (b, r).

Ring multiplication has the added condition of associativity. This can be rewrit-
ten as:

F (F (a, b), c)− F (a, F (b, c)) = 0. (4.1)
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Now suppose we have an algebra (A,+,×) over a commutative ring k and we
would like to perturb its multiplication. A candidate would be to find an f ∈
Homk(A⊗A,A) that satisfies (4.1). We can then attempt produce a new algebra
A′ = (A,+,×+ f). With multiplication is defined as:

ab = a× b+ f(a, b)

for a, b ∈ A. We observe that for all a, b, c ∈ A:

a(b+ c) = a× (b+ c) + f(a, b+ c) = a× b+ a× c+ f(a, b) + f(a, c) = ab+ ac

(a+ b)c = (a+ b)× c+ f(a+ b, c) = a× c+ b× c+ f(a, c) + f(b, c) = ac+ bc

and

a(bc)− (ab)c = a× (b× c+ f(b, c)) + f(a, (b× c+ f(b, c)))

− (a× b+ f(a, b))× c− f((a× b+ f(a, b)), c)

= a× (b× c) + a× f(b, c) + f(a, b× c) + f(a, f(b, c))

− (a× b)× c− f(a, b)× c− f(a× b, c)− f(f(a, b), c)

= a× (b× c)− (a× b)× c+ f(a, f(b, c))− f(f(a, b), c)

+ a× f(b, c)− f(a× b, c) + f(a, b× c)− f(a, b)× c

= a× f(b, c)− f(a× b, c) + f(a, b× c)− f(a, b)× c

= 0 ⇐⇒ ∂2(f) = 0 recall Example 16.

Thus we conclude that A′ is an associative algebra only if f is associative and a
Hochschild 2-cocycle.

4.3 Deformations

We shall begin with some examples:

Example 19. We consider consider the C-algebra A = C[x, y] which is a poly-
nomial algebra in two commuting variables. Then we can define:

At = C[x, y, t]
/
⟨xy − (t+ 1)yx⟩

and consider how the structure of At varies as t moves around in [0,∞). We
observe that A0

∼= A and thus for t = 0 the variables commute. For non-zero t
values we obtain the relation:

xy = (t+ 1)yx

and thus the algebra is no longer commutative.

We unpack this example, we have introduced a new multiplication on the
algebra A that has a dependence on a parameter t which we can perturb to
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(a) t = 0 (b) t = 2

Figure 4.1: Graph of the curve represented by At = C[x, y, t]
/
⟨y2 − x3 − x− t⟩

for varying t values.

obtain different algebras. It also important to note that our new multiplication
agrees with that of A for t = 0.

Example 20. There is a geometric interpretation of a deformation. The co-

ordinate ring of a curve C over a field k is in the quotient k[x, y]
/
⟨f⟩ where

C : f(x, y) = 0, more on this can be seen on page 66 of [11]. Suppose that A is
the coordinate ring of some curve then a deformation of A will correspond to a
geometric deformation of the curve. Consider

A = C[x, y]
/
⟨y2 − x3 − x⟩

as a C-algebra. We then define:

At = C[x, y, t]
/
⟨y2 − x3 − x− t⟩ .

In Figure 4.1 we have plotted the curve corresponding to At for different t values.

Definition 42 (1.2 in [4]). A one-parameter formal deformation or a deformation
of a k-algebra A is a formal power series

F =
∞∑
n=0

fnt
n

with coefficients in Homk(A⊗ A,A) such that

f0 : A⊗ A → A

is multiplication in A. We call the first fi that is non-zero the infinitesimal of F .

We note this definition gives rise to a family of algebras A := {At}t∈[0,∞). We
shall refer to both F and A as a deformation of A.
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Example 21 ([4]). We shall present a non-associative example of a deformation.
We consider the algebra A = k[x] and denote by f0 : A ⊗ A → A the normal
multiplication in A. We define:

f1 : A⊗ A → A

(xn, xm) 7→ (mn)xm+n,

and then write F = f0 + f1t. We compute:

F (x2, F (x, x)) = F (x2, x2 + tx2)

= x4 + tx4 + 4tx4 + 4t2x4

= x4 + 5tx4 + 4t2x4,

and

F (F (x2, x), x) = F (x3 + 2tx3, x)

= x4 + 2tx4 + 3tx4 + 6t2x4

= x4 + 5tx4 + 6t2x4 ̸= x4 + 5tx4 + 4t2x4.

Thus F is a non-associative deformation.

4.4 Associative deformations

We shall describe some necessary conditions for a deformation of a k-algebra A
to be associative. This will lead us to more discussions Hochschild cohomology.

We consider a deformation F =
∞∑
i=0

fit
i of A. Then we observe:

F (F (a, b), c) = F (a, F (b, c)) (4.2)

⇐⇒
∞∑
i=0

fi

(
∞∑
j=0

fj(a, b)t
j, c

)
ti =

∞∑
i=0

fi

(
a,

∞∑
j=0

fj(b, c)t
j

)
ti

We note that for any fi, fj that fi(fj(a, b)t
m, a)tn will have degree n + m.

Thus we can compare the coefficients of tn to obtain the equation:

n∑
i=0

fi(fn−i(a, b), c) =
n∑

i=0

fi(a, fn−i(b, c)). (4.3)

Suppose the infinitesimal of F is fm then for n = m equation (4.2) reads:

f0(fm(a, b), c) + fm(f0(a, b), c) = f0(a, fm(b, c)) + fm(a, f0(b, c))

⇐⇒ fm(a, b)c+ fm(ab, c) = afm(b, c) + fm(a, bc)

⇐⇒ 0 = afm(b, c)− fm(ab, c) + fm(a, bc)− fm(a, b)c

⇐⇒ ∂2(f) = 0.
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We have just proved:

Proposition 13. If F is an associative deformation of A then the infinitesimal
of F is a Hochschild 2-cocycle.

We wish to find a sufficient condition for associativity. This is:

Theorem 11. If HH3(A) is trivial then any 2-cocycle of may be extended to an
associative deformation of A.

Proof. This is beyond the scope of this report and we refer the reader to section
9 of [4].

4.5 Some associative deformations of complex

algebras

We consider a finite dimensional C-algebra A that is generated by 2 elements.
In this section we shall present a method to produce many C-algebras that have
A as an associative deformation. This method was invented during project dis-
cussions with Agata Smoktunowicz, and later extended and investigated further
in collaboration with Dora Puljić in a soon-to-be released preprint. We refer the
reader to Appendix C for the proofs concerning Method 1.

Definition 43. Let S be a subset of a k-algebra A. Then S is a generating set
if all elements of A can be written as a sum of products of elements of S.

Definition 44. A k-algebra A is a deformation of a k-algebra N if there ex-
ists a deformation of N such that A ∈ {Nt}t∈[0,∞). We say A is an associative
deformation of N if the deformation is associative.

We shall present the method here and then do some examples.

4.5.1 The Method

We first develop some notation, by C[x, y][t] the algebra where x, y do not com-
mute with each other but do commute with t.

Method 1. We fix a finite dimensional C-algebra A with two generators a, b.
Then:

1. We consider A[t], the polynomial algebra over A. We will use t as the
parameter of our deformation. We define:

x := ta

y := tb
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2. We calculate:

x2 = t2a2

xy = t2ab

yx = t2ba

y2 = t2b2

and continue to calculate larger products of x, y. We shall then proceed
with a Diamond Lemma1 like decomposition of large products of a, b in
terms of smaller products of a, b. This will cause all elements of sufficiently
large length to have a power of t as a factor. In doing so we will obtain
relations on x, y and products thereof, we terminate this process when we
have enough relations to reduce an arbitrary product of x, y to one of a
finite list multiplied by some power of t. Our relations will be given by
polynomials p1, . . . , pm.

3. We present the algebra:

N := C[x, y][t]
/
⟨p1, . . . , pm⟩ .

We note that sufficiently large products of x, y will obtain a factor of t.
Now we evaluate t at various values in [0,∞). We denote by Ns the algebra
that arises from N by evaluating t at s. This algebra N and the family of
algebras {Ns} is the output of this method.

Proposition 14. Let A be a finite dimensional C-algebra. Let N be the output
of Method 1 applied to A. Then N1

∼= A.

Proof. We refer the reader to Proposition 20 in Appendix C.1.

Proposition 15. Let A be a finite dimensional C-algebra. Let N be the output
of Method 1 applied to A. Then A is an associative deformation of N0.

Proof. We refer the reader to Appendix C.2.

Changing the chosen generators a, b can result in different algebras N0 that
have A as an associative deformation.

4.5.2 Notes on the method

We give some notes before the examples:

• In step (1) we are trying to capture the behaviour of the elements in A but
in a way that is controlled by t.

• We note that since a, b generate A some linear combination of products of
a, b will be the identity. In step (2) it is important we find a relation on
x, y, t and 1 ∈ A.

1See section 1 of [1]
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• In step (3) we discard A entirely however because of the relations pi in some
sense x and y “remember” that they came from A and that they form a
generating set. This step results in something subtle: x, y themselves are
no longer dependent on t (and thus do not vanish when we set t = 0) but
their products maintain their dependence on t. We have loosened our grip
on x, y just enough for the deformation to take place.

• We note that our deformation will be associative since the multiplication of
Nt will inherit from the associative algebras N .

4.5.3 Examples

Practically it can be useful to fix a basis for the algebra A as this helps find the
decompositions in step (2).

Example 22. We consider A = C ⊕ C and fix a = (i, 0), b = (0, 1). Clearly
C-linear combinations of a and b span A so our basis is just {a, b}. We denote by
1 the multiplicative unit in A. Now we consider A[t] and define:

x := ta = (ti, 0)

y := tb = (0, t).

We calculate:

x2 = t2a2 = (−t2, 0) = tix

xy = t2ab = (0, 0) = 0

yx = t2ab = (0, 0) = 0

y2 = t2b2 = (0, t2) = ty

t1 = −ix+ y.

Thus we have relations:

p1 = x2 − tix = 0

p2 = xy = 0

p3 = yx = 0

p4 = y2 − ty = 0

p5 = t1− (−ix+ y).

Since xy = yx = 0 and squares of x, y can be reduced we have enough relations
to decompose any large product into only multiples of x, y and powers of t.

Thus we present:

N := C[x, y][t]
/
⟨p1, p2, p3, p4, p5⟩ .

We observe:
N0 = C[x, y]

/
⟨x2, xy, yx, y2,−ix+ y⟩ ,
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and
N1 = C[x, y]

/
⟨x2 − ix, xy, yx, y2 − y, 1 + ix− y⟩ .

We see that x, y behave exactly as a, b ∈ A and by Proposition 14. The reader
may check the isomorphism is given by:

ϕ : N1 → A

1 7→ 1

x 7→ (i, 0)

y 7→ (0, 1).

Thus we have produced an algebra N0 that has A = C⊕ C as a deformation.

Example 23. We consider A = M2(C) and fix:

a =

(
1 0
0 −1

)
, b =

(
0 1
1 0

)
.

We denote by 1 the multiplicative unit in A. Next we compute:(
1 0
0 0

)
=

1

2
(a+ b2) = e1(

0 1
0 0

)
=

1

2
(ab+ b) = e2(

0 0
1 0

)
=

1

2
(b− ab) = e3(

0 0
0 1

)
=

1

2
(b2 − a) = e4

and thus a, b generate A as an algebra. Now we consider A[t] and define:

x := ta

y := tb.

We compute:

x2 = t2
(
1 0
0 1

)
= t21

xy = t2
(

0 1
−1 0

)
= t2(e2 − e3)

yx = t2
(
0 −1
1 0

)
= t2(e3 − e2)

y2 = t2
(
1 0
0 1

)
= t21
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We have obtained the relations:

p1 = x2 − t21

p2 = x2 − y2 = 0

p3 = xy + yx = 0

p4 = y2 − t21.

Now we consider larger products to produce more relations:

x3 = t3
(
1 0
0 −1

)
= t2x

y3 = t3
(
0 1
1 0

)
= t2y

hence we have also obtained:

p5 = x3 − t2x = 0

p6 = y3 − t2y = 0.

These allow us to derive the following:

x2y = y3 = yx2 = y3 = t2y

y2x = x3 = xy2 = x3 = t2x,

which are enough to reduce an arbitrary product of x, y. Thus we present:

N := C[x, y][t]
/
⟨p1, p2, p3, p4, p5, p6⟩ .

We observe:
N0 = C[x, y]

/
⟨x2, y2, xy + yx⟩ ,

and
N1 = C[x, y]

/
⟨x2 − 1, y2 − 1, xy + yx, x3 − x, y3 − y⟩ .

By Proposition 14 we have N1
∼= A. The reader may check the isomorphism is

given by:

ϕ : N1 → A

1 7→ 1

x 7→
(
1 0
0 −1

)
y 7→

(
0 1
1 0

)
.

Thus we have produced an algebra N0 that has A = M2(C) as a deformation.
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4.5.4 Future Work

In this section we pose some questions about Method 1 and suggest some gener-
alisations.

Question 1. Let A be a C-algebra and suppose G1 = {a, b} and G2 = {a′, b′} are
two distinct generating sets of A. Under what conditions does Method 1 using
A,G1 and A,G2 result in the same algebra N0 that has A as a deformation?

Question 2. Let A be a C-algebra. Under what conditions does Method 1 only
produce one algebra N0 that has A as a deformation.

Question 3. Let A be a C-algebra. Does their exist a finitely terminating algo-
rithm that will produce all the algebras N0 arising from Method 1 that have A
as a deformation?

Question 4. Let A be a C-algebra. Do ring theoretic properties of the gener-
ators a, b (for example being idempotent, being irreducible idempotent, prime)
determine any properties of the algebra N0 arising from Method 1 using A, {a, b}?

Question 5. Let A be a C-algebra. Do ring theoretic properties of A (for example
being semi-simple, local) determine any properties of the algebra N0 arising from
Method 1 using A?

Question 6. Can Method 1 be generalised to be used for algebras over a general
field or a general commutative ring?

The technique described in Method 1 yields some natural generalisations.
Firstly we note that defining x, y as described is quite a strong restriction. At
the cost of more complicated computations one could investigate what happens
when x, y are higher degree polynomials in A[t], for example:

x := at2

y := t3b.

Question 7. We consider Method 1 but in step (1) we instead define:

x := tnaa

y := tnbb

for na, nb ∈ N. Will this allow us to produce a more general class of algebras N0

that have A as a deformation?

We note that Method 1 requires A to be generated by 2 elements. We could
extend this to 3 generators as follows: consider a C-algebra A generated by a, b, c.
We pass to A[t] and define:

x := ta

y := ty

z := tc

and then proceed as in Method 1.
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Question 8. Does there exist a generalisation of Method 1 for C-algebras A that
are not finitely generated?
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Chapter 5

Conclusion

In Chapter one we developed enough theory to describe abelian categories as they
axiomatize the setting for homological algebra. A reader who enjoyed this section
is encouraged to read [5]. Empowered by Mitchell’s embedding theorem we were
granted the right to restrict our attention to the concrete categories of modules
over associative unital rings. Some of their theory was expounded, and their ten-
sor product was constructed. We then proceeded with the basic components of
homological algebra, defining chain complexes, homologies and their duals. Had
there been more time a discussion of derived functors would have been included.
The interested reader is encouraged to read Introduction to Homological Algebra
by Charles A. Weibel. The next section treated the practicalities of a particular
homology theory - that of associative algebras. Characterisations of the aris-
ing homology and cohomology groups were provided and some calculations were
presented. The reader is encouraged to read [9] for more details. In our final
chapter we introduced algebraic deformation theory and applied our knowledge
of Hochschild cohomology. We closed by presenting a novel method to produce
associative deformations with a specified target algebra. The reader may want to
read some of the works of Murray Gerstenhaber on the subject.

The reader is now equipped to engage in further study of homological alge-
bra. Some recommended topics are group cohomology, galois cohomology and
the theory of derived categories. They been exposed to the theory of algebraic
deformations. The physically minded reader is encouraged to read about their
applications to mathematical physics in Noncommutative Deformation Theory by
Eivind Eriksen, Olav Arnfinn Laudal, Arvid Siqveland.
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Appendix A

Modules

Definition 45. Let R be an associative unital ring, then a left R-module is an
abelian group M equipped with an R action:

R×M → M

(r,m) 7→ rm

such that for all r, r′ ∈ R and m,m′ ∈ M

r(m+m′) = rm+ rm′ (A.1)

(r + r′)m = rm+ r′m (A.2)

r(r′m) = (rr′)m (A.3)

1Rm = m (A.4)

We can define a right R-module analogously, it is an abelian group M equipped
with an R action:

M ×R → M

(m, r) 7→ mr

such that for all r, r′ ∈ R and m,m′ ∈ M

(m+m′)r = mr +m′r (A.5)

m(r + r′) = mr +mr′ (A.6)

(mr)r′ = m(rr′) (A.7)

m1R = m. (A.8)

Let S be another associative unital ring then we can define a (R, S)-bimodule as
an abelian group M that is a left R-module and a right S-module.

A left R-module M may be denoted RM , and similarly R may appear on the
right or both sides to denote a right or bimodule respectively.

Example 24. These are quite common:

• Let k be a field then left k-modules are precisely vector spaces over k. We
note that a left k-module is also a right k-module and a (k, k)-bimodule
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due to the commutativity of k (hence forth we shall write k-bimodule when
both rings are the same).

• Let R be an associative unital ring, then R itself is clearly an R-bimodule.
One sided ideals of R correspond to one sided modules over R and two sided
ideals correspond to bimodules.

• We again consider a ring R and consider n × n matrices with entries in R
for fixed n, this too gives an R-bimodule.

• We note that any bimodule will trivially give rise to a left or right module
by simply forgetting the action on the second side.

Next we define a homomorphism of R-modules:

Definition 46. Let R be an associative unital ring and M,N be left R-modules.
Then an R-homomorphism is a function f : M → N such that for m,m′ ∈ M
and r ∈ R:

• f(m+m′) = f(m) + f(m′)

• f(rm) = rf(m).

A bijective R-homomorphism is called an R-isomorphism.

For a ring R its left modules and their homomorphisms form a category using
the usual compositions and identities.

The ring Z has a special property where modules are concerned:

Proposition 16. Let R be a ring and we consider a module RM . Then M is
also a left Z-module.

Proof. We consider the unique ring homomorphism ϕ : Z → R. Then we define
an action on M :

Z×M → M

(z,m) 7→ ϕ(z)m

and thus RM can be regarded as ZM .

Definition 47. Let R be a ring and M a left R-module then a submodule N ⊆
M is a subgroup of the underlying group of M that is closed under left scalar
multiplication. Submodules for right and bimodules can be defined analogously.

Example 25. • For a module M both {1} and M are submodules of M ,

• a submodule of a vector space is a vector subspace,

• for a ring R we can view it as a left R-module and then its left ideals are
submodules.
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Definition 48. Let R be a ring and M a left R-module then a quotient module
of M by a submodule N is the quotient group M /N equipped with the scalar
multiplication:

R×M /N → M /N

(r,m+N) 7→ rm+N.

Then the natural map π : M → M /N is a surjection as well as a left R-module
homomorphism. Quotient module s for right and bimodules can be defined anal-
ogously.
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Appendix B

Homological Algebra

B.1 Functoriality of hom and tensor for mod-

ules

In this section we will always regard R to be a unital associative ring and we
consider the category RMod. We will describe tensor as a functor and prove that
both hom and tensor are additive.

B.1.1 Hom

We recall from Example 5 that we can regard hom as a functor and we can write
its signature:

Hom(□,□) : RModop × RMod → Ab.

Proposition 17. We recall the notation used in Example ?? and fix an A ∈
Ob(RMod) and let TA := Hom

RMod(A,□). We similarly define LC := Hom
RMod(□, C).

Then TA is an additive functor for all A and LC is an additive functor for all C.

Proof. We only provide the proof that TA is additive since the proof that LC is
additive will be identical but with the arrows reversed. We want to show that for
all A,B,C ∈ Ob(RMod) the map induced by TA:

ϕ : Hom
RMod(B,C) → HomAb(TA(B), TA(C))

is a group homomorphism. We recall that both RMod and Ab are additive
categories and hence their hom-sets are always abelian groups. Next we observe
that for each f : B → C we obtain an induced map

TA(B) → TA(C)

that is compatible with their abelian group structures. Thus it holds that:

Hom
RMod(B,C) ⊆ HomAb(TA(B), TA(C)) as groups.

Thus the map ϕ is simply the inclusion:

Hom
RMod(B,C) ↪−→ HomAb(TA(B), TA(C))
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and is therefore a group homomorphism. Since our argument does not rely on a
choice of A,B,C it holds that TA is an additive functor for all A ∈ Ob(RMod).

B.1.2 Tensor

First we show how tensor is a functor and then we shall prove it is additive:

Proposition 18 ([12]). Let f : AR → A′
R and g : RB → RB

′ be maps of
R-modules. Then there exists a unique R-homomorphism:

f ⊗ g : A⊗R B → A′ ⊗R B′

(a⊗b) 7→ (f(a)⊗g(b)).

Proof. We consider the R-biadditive map:

h : A⊕B → A′ ⊗R B′

(a, b) 7→ f(a)⊗g(b).

By the definition of the tensor product there exists a unique R-homomorphism
that makes:

A⊕B A⊗R B

A′ ⊗R B′

h

ϕ

ĥ

commute. Using the commutativity we observe:

h(a, b) = f(a)⊗g(b) = ĥ(ϕ(a, b)) = ĥ(a⊗b)

and thus ĥ(a⊗b) = f(a)⊗g(b) as required.

Corollary 1. Given maps of right R-modules A
f−→ A′ f ′

−→ A′′ and maps of left

R-modules B
g−→ B′ g′−→ B′′, then:

(f ⊗ g) ◦ (f ′ ⊗ g′) = (f ′ ◦ f)⊗ (g′ ◦ g).

Proof. Both maps send a⊗b 7→ f ′(f(a))⊗g′(g(b)) for all a ∈ A and b ∈ B.

We are now ready to prove:

Theorem 12. Let AR, RB be R-modules then there are additive functors FA :

RMod → Ab and GB : ModR → Ab defined as:

FA(M) = A⊗R M and FA(f) = 1A ⊗ f

for f : M → M ′, and

GB(M) = M ⊗R B and GB(g) = g ⊗ 1B
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for g : M → M ′.

Proof. We only prove the functoriality and additivity of FA since the proof is
identical for GB.

• First we show functoriality. By Corollary 1 FA preserves composition and
it preserves identities because:

FA(1M) = 1A ⊗ 1M = 1A⊗RM

since it fixes every a⊗m for a ∈ A and m ∈ M .

• Now we show additivity. We consider maps f, g : M → M ′ and proceed:

FA(f + g) = 1A ⊗ (f + g) = 1A ⊗ f + 1A ⊗ g

where the last equality follows from the relation 2.3.

Thus FA is an additive functor.
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Appendix C

Proofs for Method 1

In this section the proofs of Proposition 14 and Proposition 15 are presented.
They appear here as they shall appear in the upcoming preprint. The author
does not claim them to be their own work and in fact they are the result of joint
work with Agata Smoktunowicz and Dora Puljić.

C.1 Proposition 14

We recall C[x, y][t] denotes the algebra where x, y do not commute with each
other but do commute with t and consider the following diagram.

C[x, y][t]

C[x, y][t] /I A[t] A

C[x, y][t]
/
I + ⟨t− 1⟩

can

i g

ξf

h
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where:

f : C[x, y][t] → A[t]

x 7→ at

y 7→ bt

t 7→ t

g : A[t] → A

ta 7→ a

tb 7→ b

t 7→ 1

h : C[x, y][t] /I → C[x, y][t]
/
I + ⟨t− 1⟩

x 7→ x

y 7→ y

t 7→ 1

ξ : C[x, y][t] → A

x 7→ a

y 7→ b

1 7→ 1

ker(f) = I and i : C[x, y][t] /I ∼= im(f) ⊆ A[t]. Next we establish some notation.
For a monomial pi in C[x, y] we will denote by pi the same product as pi, but
with all instances of x replaced by ta, and all instances of y replaced by tb. We
will denote by pi the same product as pi, but with all instances of x replaced by
a, and all instances of y replaced by b.

Proposition 19. Let ξ : C[x, y][t] → A be such that

ξ(x) =
n∑

i=0

ai, ξ(y) =
n∑

i=0

bi, ξ(t) = 1.

Then ker ξ = I + ⟨t− 1⟩.

Proof. We let e =
∑

i αipit
βi ∈ ker ξ where pi are monomials in C[x, y], αi ∈ C

and βi ∈ N. We will show there exists γi ∈ N such that ê :=
∑

i αipit
γi ∈ I, so

that e ∈ I + ⟨t− 1⟩ as e− ê ∈ ⟨t− 1⟩. This follows since

e− ê =
∑
i

αipit
βi −

∑
i

αipit
γi =

∑
i

αipi(t
βi − tγi) =

∑
i

αipit
m(tn− 1) ∈ ⟨t− 1⟩

for some m,n ∈ N.
Note that ξ(e) =

∑
i αipi = 0. Hence for large enough k ∈ N we have

tk
∑
i

αipi =
∑
i

αipit
k−lenpi = 0.
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Notice that by assumption there exist ji ∈ N such that pit
ji ∈ imf . We let

f(ci) = pit
ji for some ci ∈ C[x, y][t]. It follows that

f(
∑
i

αicit
k−ji−lenpi) =

∑
i

αipit
k−lenpi = 0.

Proposition 20. We have
C[x, y][t]/I
⟨t− 1 + I⟩

∼= A.

Proof. Note that the ideal ⟨t− 1 + I⟩ of C[x, y, t]/I equals the set

C[x, y][t](t− 1) + I

I
= {g(t− 1) + I | g ∈ C[x, y, t].}

By the third isomorphism theorem we have

C[x, y[t]/I
(C[x, y][t](t− 1) + I)/I

∼=
C[x, y, t]

C[x, y][t](t− 1) + I
.

Now notice that C[x, y][t](t− 1) + I = ker ξ and as ξ is onto,

C[x, y][t]
ker ξ

∼= A

by the first isomorphism theorem.

C.2 Proposition 15

Recall that the algebra

C[x, y, t]/I /< t− 1 + I >

as in Proposition 19. Moreover, as showed in the proof of Proposition 20, this
algebra is isomorphic to the algebra C[x, y][t]/I)/ < I, t− 1 >. We need to show
that this algebra is isomorphic to the algebra:

C[d1, d2, . . . dn]I ′

where I ′ is the ideal generated in C[d1, d2, . . . dn] by elements:

dk ∗ dm −
n∑

i=1

(ζi,k,mdk + ξi,k,m(1)dk).

Notice that these relations are the specification of the deformation relations
dk ∗ dm −

∑n
i=1(ζi,k,mdk + tξi,k,m(t)dk) at t = 1.

Consider the following map:

ϕ : C[d1, . . . , dn] → C[x, y, t]/< I, t− 1 >,
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given by
ξ(di) = qi+ < I, t− 1 >

for i = 1, 2, . . . , n.
Observe that I ′ ∈ ker(ξ) since

ξ

(
dk ∗ dm −

n∑
i=1

(ζi,k,mdk + ξi,k,m(1)dk

)

=ck ∗ cm −
n∑

i=1

(ζi,k,mck + ξi,k,m(1)ck)+ < I, t− 1 >,

since ck ∗ cm −
∑n

i=1(ζi,k,mck + ξi,k,m(1)ck) ∈ I+ < t− 1 >.
Therefore

I ′ ⊆ ker(ξ).

Therefore the dimension of C[d1, . . . , dn]
/
ker(ξ) does not exceed the dimen-

sion of C[d1, . . . , dn] /I ′ . Notice that C[d1, . . . , dn] /I ′ is spanned as linear space
by elements di + I, and hence has dimension at most n. On the other hand,

the the first Isomorphism theorem for rings, C[d1, . . . , dn]
/
ker(ξ) is isomorphic

to im(ξ) = C[x, y, t]/< I, t− 1 > , which in turn is isomorphic to A by Propo-
sition 20, and hence has dimension n. It follows that I ′ = ker(ξ) and hence

C[d1, . . . , dn]
/
ker(ξ) is isomorphic to C[d1, . . . , dn] /I ′ .
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