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1. Introduction

In this talk we will define t-structures and develop some of their associated theory.
We will give examples and compute their hearts.
The goal of this talk is to give an exposition of the behaviour of stable ∞-categories
and showcase the techniques available in this setting. Hence we have chosen to focus
on proofs that make use of the stable structure. A slogan for this talk would be “kill it
with exact sequences”.
There are strong parallels between stable∞-categories and triangulated (one)-categories,
this will be addressed momentarily.

2. Recollections

We recall:

Definition 1. A pointed ∞-category C is stable if:

(a) C admits finite limits and colimits.
(b) A square

A B

C D

is a pushout if and only if it is a pullback.

Furthermore we also recall:

Fact 1. Let C be a stable ∞-category, then hC canonically has the structure of a tri-
angulated category where the shift functor is given by Σ : hC → hC and a diagram
X → Y → Z is a triangle in hC if and only if it is a fibre sequence in C.

Notation 1. Let X,Y ∈ C a stable ∞-category. Then we define

ExtnC(X,Y ) := π0MapC(Ω
nX,Y )

and note for n negative this can be identified with π−nMapC(X,Y ). More generally,
ExtnC(X,Y ) can be identified with the (−n)th homotopy group of the mapping spectrum
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2 DAVID BOWMAN

from X to Y . It then follows from the definitions that given a fibre sequence X → Y →
Z, for all W ∈ C we obtain a long exact sequence

· · · → ExtnC(Z,W )→ ExtnC(Y,W )→ ExtnC(X,W )→ Extn+1
C (Z,W )→ . . .

of abelian groups.

3. Definitions and Basic Facts

We are now ready to define our object of interest:

Definition 2. Let D be a triangulated category, then a t-structure on D is the data
of two full subcategories (D≤0,D≥0), each stable under isomorphism such that:

(t1) for X ∈ D≥0 and Y ∈ D≤0 we have HomD(X,Y [−1]) = 0,
(t2) there are inclusions D≥0[1] ⊆ D≥0 and D≤0[−1] ⊆ D≤0,
(t3) ∀X ∈ D there exists a fibre sequence X ′ → X → X ′′ where X ′ ∈ D≥0 and X ′′ ∈

D≤0[−1].
Furthermore we define D≥n := D≥0[n] and D≤n := D≤0[n].

Morally we can think of (t1) as saying “HomD(D≥0,D≤−1) = 0” and (t3) as asserting
there exists an exact sequence “D≥0 → D → D≤−1”.

Remark 1. Let D be a triangulated category and (D≤0,D≥0) be a t-structure. Then
D≥0 is uniquely determined as the full subcategory of D spanned by the objects X such
that HomD(X,Y ) = 0 ∀Y ∈ D≤−1. Similarly D≤0 is determined by D≥0.

Definition 3. A t-structure on a stable ∞-category C is a t-structure on hC. If C is
equipped with a t-structure then we denote C≥n and C≤n as the full subcategories of C
spanned by those objects belonging to hC≥n and hC≤n respectively.

Example 1. We state the main examples and in the course of this talk we shall verify
the axioms in these cases.

• On the ∞-category of Sp we may define Sp≥0 as the full subcategory spanned by
spectra X such that πiX ≃ 0 for i < 0 and Sp≤0 as the full subcategory spanned by
spectra Y such that πiY ≃ 0 for i > 0.
• Let R be a commutative ring and D := D−(R) be the left bounded derived category
of R. Then we may define D≥0 as the full subcategory spanned by the complexes X
such that Hi(X) ≃ 0 for i < 0 and D≤0 as the full subcategory spanned by complexes
X such that Hi(X) ≃ 0 for i > 0.

Now we will state a fact from Higher Topos Theory that we will use often.

Fact 2. HTT 5.2.7.8 Let C be an ∞-category and C0 ⊆ C a full subcategory. The
following are equivalent:

• For every object there exists a localization f : X → Y relative to C0. That is for each
X ∈ C there exists Y ∈ C0 and a map X

f−→ Y inducing an equivalence

MapC(Y,W )
f∗
−→ MapC(X,W ) ∀W ∈ C0.

• The inclusion C0 ⊆ C admits a left adjoint.

Proposition 1. Let C be a stable ∞-category equipped with a t-structure, then for
n ∈ Z the full subcategory C≤n is a localisation of C.

Proof. Without loss of generality we assume n = −1, we will use Fact 2. Consider
X ∈ C and from (t3) we obtain a fibre sequence

X ′ → X
f−→ X ′′
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with X ′′ ∈ C≤−1. We claim f is our desired localisation relative to C≤−1. For any
Y ∈ C≤1 we have

MapC(X
′′, Y )

f∗
−→ MapC(X,Y )

is an equivalence by Whitehead’s Theorem as the fibre is MapC(X
′[1], Y ) ≃ 0 by (t1). □

For n ∈ Z we have shown the existence of a left adjoint τ≤n : C → C≤n to the inclusion
C≤n ↪→ C. A dual argument shows the inclusion C≥n ↪→ C admits a right adjoint τ≥n.
Hence:

Corollary 1. C≤n is stable under all limits that exist in C and dually C≥n is stable under
all colimits that exist in C.
Proof. This is due to the inclusion functors being appropriate adjoints. □

It follows from the above proof that:

Corollary 2. Given C as above, X ∈ C and n ∈ Z then there is a fibre sequence

τ≥nX → X → τ≤n−1X.

Fact 3. Let C be a stable ∞-category equipped with a t-structure and m,n ∈ Z. Then:
(a) τ≤n : C≤m → C≤m,
(b) τ≥n : C≤m → C≤m

Lemma 1. Let a ≤ b ∈ Z and suppose ∃f : X → Y such that πif is an equivalence for
a < i < b. Then τ[a,b]f := (τ≥a ◦ τ≤b)f is an equivalence.

Proof. Clearly τ[i,i] is an equivalence for a < i < b. Note we have a fibre sequence

τ≥a+1τ[a,a+1]X ≃ τ[a+1,a+1]X → τ[a,a+1]X → τ[a,a]X ≃ τ≤nτ[a,a+1]X.

Then f induces a map of fibre sequences:

Ωτ[a,a]X τ[a+1,a+1]X τ[a,a+1]X

Ωτ[a,a]Y τ[a+1,a+1]Y τ[a,a+1]Y

≃ ≃ τ[a,a+1]f

and we conclude τ[a,a+1]f is an equivalence and the claim follows from iterating this
argument. □

Proposition 2. Let C, (C≤0, C≥0) be as above, then for all m,n ∈ Z there exists a
canonical map

τ≤m ◦ τ≥n
θ−→ τ≥n ◦ τ≤m

which is an equivalence of functors C → C≤m ∩ C≥n.
1

Proof. The existence of θ follows from abstract facts in HTT.7.3.1 and the commutativity
of

C≥n C

C≥n ∩ C≤m C≤m .

τ≥n τ≤m

For each X ∈ C we have a morphism θX : τ≤m ◦ τ≥nX → τ≥n ◦ τ≤ mX, we wish to show
this is an isomorphism in the homotopy category. If m ≤ n then both sides are zero so
we are done. Assume m ≥ n, it suffices to show that composition with θX induces an
isomorphism

Ext0C(τ≥n ◦ τ≤mX,Y )
θ∗X−−→ Ext0C(τ≤m ◦ τ≥nX,Y ) ≃ Ext0C(τ≥nX,Y )

1By intersection we mean the fibered product of the two inclusions into C.
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for all Y ∈ C≤m ∩ C≥n where the last equivalence is by adjunction. We obtain a map of
long exact sequences:

Ext0C(τ≤n−1τ≤mX,Y ) Ext0C(τ≤n−1X,Y )

Ext0C(τ≤mX,Y ) Ext0C(X,Y )

Ext0C(τ≥nτ≤mX,Y ) Ext0C(τ≥nX,Y )

Ext1C(τ≤n−1τ≤mX,Y ) Ext1C(τ≤n−1X,Y )

Ext1C(τ≤mX,Y ) Ext1C(X,Y ) .

f0

η∗ η∗

f1

ε∗ ε∗

f2

f3

f4

Since m ≥ n we have τ≤n−1 ≃ τ≤n−1τ≤m we have that f0 and f3 are bijective. Since
Y ∈ C≤m we have that f1 is bijective and f4 is injective (by the long exact sequence on
homotopy groups of the relevant mapping spectra). Hence by the 5-lemma f2 is bijective
as desired. □

Definition 4. Let C be a stable ∞-category equipped with a t-structure. Then the
heart C♡ of C is the full subcategory C≥0 ∩ C≤0. We denote π0 := τ≥0 ◦ τ≤0 : C → C♡
and for n ∈ Z we let πn : C → C♡ be the composition of π0 with the shift X → X[−n].

Proposition 3. Let C be as above, then C♡ is equivalent to the nerve2 of a 1-category.

Proof. Let X,Y ∈ C♡ then we shall compute the higher homotopy groups of

MapC♡(X,Y ) ≃ MapC(X,Y ).

We observe for i ≥ 1:

πiMapC(X,Y ) ≃ π0Ω
iMapC(X,Y ) ≃ π0MapC(X,Y [−i]) ≃ 0,

and hence the claim follows. □

In the proof it was shown that forX,Y in the heart of C that Map(X,Y ) ≃ π0Map(X,Y )
and since stable categories are enriched over spectra we note the heart is enriched over
abelian groups.

Fact 4. The heart of a stable ∞-category C is an abelian category and the data of a
fibre sequence X → Y → Z in C yields a long exact sequence of homotopy objects

· · · → πnX → πnY → πnZ → πn−1X → . . .

in C♡.

Lemma 2. Let a < b ∈ Z and suppose ∃f : X → Y such that πif is an equivalence for
a ≤ i ≤ b. Then τ[a,b]f := (τ≥a ◦ τ≤b)f is an equivalence.

Proof. Clearly τ[i,i] is an equivalence for a < i < b. Note we have a fibre sequence

τ≥a+1τ[a,a+1]X ≃ τ[a+1,a+1]X → τ[a,a+1]X → τ[a,a]X ≃ τ≤aτ[a,a+1]X.

2We will ignore nerves in our notation.
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Then f induces a map of fibre sequences:

Ωτ[a,a]X τ[a+1,a+1]X τ[a,a+1]X

Ωτ[a,a]Y τ[a+1,a+1]Y τ[a,a+1]Y

≃ ≃ τ[a,a+1]f

and we conclude τ[a,a+1]f is an equivalence and the claim follows from iterating this
argument. □

Definition 5. Let C be a presentable stable ∞-category, then a t-structure on C is
accessible if C≥0 is presentable.

Fact 5. For C a presentable stable ∞-category with t-structure (C≥0, C≤0) the following
are equivalent:

• The t-structure is accessible.
• The ∞-category C≥0 is accessible.
• The ∞-category C≤0 is accessible.
• The ∞-category C≤0 is presentable.
• The truncation functor τ≤0 : C → C is accessible.
• The truncation functor τ≥0 : C → C is accessible.

4. Completeness & Whitehead

Let C be a stable ∞-category equipped with a t-structure.

Definition 6. We let C+ :=
⋃
C≤n, C− :=

⋃
C≥−n and define Cb := C− ∩ C+. Then

we say C is left bounded if C ≃ C+, C is right bounded if C ≃ C− and bounded if
C ≃ Cb.

Recall: Given a commutative ring R and an ideal I we may define the completion of
R at I as the inverse limit over n of R/In where the map R/In+1 → R/In is given by
killing In. In what follows one observes an analogy to completion of rings by thinking
of τ≤0 as ”killing I” and τ≤n as ”killing In.

Definition 7. We define the left completion of C, denoted Ĉ, as the limit of the tower

· · · → C≤2
τ≤1−−→ C≤1

τ≤0−−→ C≤0
τ≤−1−−−→ . . .

and we say C is left complete if the canonical map C ≃−→ Ĉ is an equivalence.

We now note that being left complete is equivalent to the assertion X
≃−→ lim←− τ≤nX.

There is an analogous notion of right completeness which asserts lim−→ τ≥nX
≃−→ X.

Using results from section 3.3.3 Higher Topos Theory the ∞-category Ĉ as the full
subcategory of Fun(N(Z), C) spanned by the functors F such that:

• For each n ∈ Z, F (n) ∈ C−n.
• For each m ≤ n ∈ Z, the induced morphism F (m) → F (n) induces an equivalence

τ≤−nF (m)
≃−→ F (n).

Proposition 4. Let C be a stable ∞-category equipped with a t-structure. Then:

(a) The left completion Ĉ is also stable.

(b) Let Ĉ≤0 and Ĉ≥0 be the full subcategories of Ĉ spanned by those functors F :
N(Z)→ C which factor through C≤0 and C≥0, respectively. Then these subcategories

determine a t-structure on Ĉ.
(c) There is a canonical exact functor C F−→ Ĉ which induces an equivalence3 C≤0

≃−→ Ĉ≤0.

3This part bolsters the above analogy with classical completion of rings.
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Proof. (a) Omitted as this makes use of general facts about spectrum objects which
will lead us too far astray from out interests.

(b) We note for F ∈ Ĉ we may define F [n](m) := F (m+n)[n], yielding that Ĉ≥0[1] ⊆ Ĉ≥0

and Ĉ≤0[−1] ⊆ Ĉ≤0. Moreover it’s a general fact that mapping anima in limits are

simply the limits of the mapping anima, so for X ∈ Ĉ≥0 and Y ∈ Ĉ≤0 we observe:

MapĈ(X,Y ) ≃ lim←−
n

MapC(X(n), Y (n)) ≃ lim←−
n

0 ≃ 0

by (t1). Now we produce the required fibre sequences, let X ∈ Ĉ. We let X ′′ :=
τ≤−1 ◦ X : N(Z) → C and note the unit of this adjunction assembles into a map

X → X ′′ where X ′′ ∈ Ĉ≤−1. Then the fibre of this map is in Ĉ≥0 (as it can be
identified with τ≥0 ◦X.

(c) Let D denote the full subcategory of Z×C spanned by pairs (n,C) where n ∈ C≤−n.
It follow from Fact 2 that the inclusion D ⊆ Z×C admits a left adjoint L. By the
hom-product adjunction in Cat∞ the composition

Z× C L−→ D ⊆ Z× C π2−→ C

can be identified with a functor C θ−→ Fun(Z, C) which factors through Ĉ. It suffices to
show θ is right exact4 (as both left and right exactness are equivalent to exactness).
Since the truncation functors τ≤n : C≤n+1 → C≤n are right exact, finite colimits in

Ĉ are computed pointwise. Hence we are reduced to proving that each compostion

C θ−→ Ĉ → τ≤nC
is right exact. But this composition can be identified with the functor τ≤n (which
is clearly right exact).

Finally, we observe that Ĉ≤0 can be identified with the limit of the essentially
constant tower

. . .
id−→ C≤0

id−→ C≤0
τ≤−1−−−→ C≤−1

τ≤−2−−−→ . . .

and that θ induces an equivalence of this limit with C≤0.
□

Fact 6. There is an equivalence of ∞-categories between the category of left bounded
stable ∞-categories and the ∞-category of left complete categories given on objects by

C 7→ Ĉ and C 7→ C+.
We give a criterion to check if a t-structure is left complete:

Proposition 5. Let C be a stable ∞-category equipped with a t-structure. Suppose C
admits countable products and that C≥0 is stable under them. Then C is left complete
if and only if the full subcategory C≥∞ :=

⋂
C≥n ⊆ C consists only of zero objects of C.

Proof. We observe every tower

. . . Xn → Xn−1 → . . .

in C admits a limit lim←−Xn which belongs to C≤−1. The functor C
F−→ Ĉ constructed above

admits a left adjoint G given on objects by Ĉ ∋ f 7→ lim←− f . Then C ≃−→ Ĉ is equivalent to
the unit and counit maps:

u : F ◦G→ 1Ĉ
v : 1C → G ◦ F

being equivalences. If v is an equivalence then X can be recovered as the limit of the
tower {τ≤nX} and this implies the forward direction.

4Recall right exact means the functor commutes with finite colimits.
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Now we assume C≥∞ consists only of zero objects. To prove u is an equivalence we must

show for f ∈ Ĉ the projection map lim←−(f)
pn−→ f(n) induces an equivalence τ≤−n lim←−(f)→

f(n). Equivalently we may show that the fibre of pn is in C≥−n+1. By the definition of
a limit pn factors as

lim←−(f)
pn−1−−−→ f(n− 1)

sn−→ f(n).

By the octahedral axiom we obtain a fibre sequence

fib(pn−1)→ fib(pn)→ fib(sn).

Then since fib(sn) is in C≥−n+1 it suffices to show that fib(pn−1) is in C≥−n+1 (we will
see this is closed under extensions). We observe that the fibre of pn−1 can be identified
with the limit of a tower {fib(f(m)→ f(n− 1))}m≤n (limits commute with limits). Our
claim follows from the fact that each fib(f(m)→ f(n− 1)) ∈ C≥−n+2.
Now we consider v: let X ∈ C and consider vX : X → (G ◦ F )(X). Since u is an
equivalence we conclude that τ≤n(vX) is an equivalence for all n ∈ Z. It follows that
cofib(vX) ∈ C≥n+1 for all n ∈ Z. Then by assumption we conclude cofib(vX) ≃ 0 so that
vX is an equivalence as desired. □

This result will imply that Sp and D−(R) for a commutative ring R are left and right
complete.

Theorem 3 (Whitehead’s Theorem). Let C be a stable ∞-category equipped with a

t-structure which is both left and right complete. Suppose X
f−→ Y is such that πif is

an isomorphism for all i, then f is an equivalence.

Proof. Using Lemma 2, for all a, b ∈ Z we have τ[a,b]f is an equivalence. Since f =
lim←−
n

τ≤nf and f = lim−→
n

τ≥nf we conclude f is an equivalence. □

5. t-structure on the left bounded derived category of a ring

We will construct a t-structure on the left bounded5 derived category of a commutative
ring R. Since the data of a t-structure is one-categorical in nature we will permit
ourselves to work with the classical one-categorical left bounded derived category, that
is the localisation of Ch−(R) at all quasi-isomorphisms. We consider D = D−(R) and
define D≥0 as the full subcategory of D spanned by complexes X such that Hi(X) ≃ 0
for i < 0 and similarly define D≤0 as the full subcategory spanned by complexes X such
that Hi(X) ≃ 0 for i > 0. We will recall some facts which will be used to verify the
axioms:

• For X = (Xn), Y = (Yn) ∈ Ch(R) we have

HomCh(R)(X,Y ) := {HomCh(R)(X,Y )p}p∈Z
where HomCh(R)(X,Y )p :=

∏
n
HomR(Xn, Yn+p).

• The inclusion D≤n ↪→ D admits a left adjoint τ≤n (this can be proved by hand without
general t-structure machinery).
• A triangle X → Y → Z in D gives rise to a long exact sequence on homology groups

· · · → HnX → HnY → HnZ → Hn−1X → . . .

in the category of R modules ModR (again this is proved by hand using the snake
lemma and that the localisation functor preserves homology groups).

Proposition 6. Let R be a commutative ring, D = D−(R) and (D≤0,D≥0) defined as
above. Then this is the data of a t-structure on D.

5Recall Ch−(R) is the full subcategory of Ch(R) spanned my complexes M = (Mn) such that Mn
∼= 0

for n ≪ 0.
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Proof. We check the axioms.

(a) Let X ∈ D≥0 and Y ∈ D≤0, we must show Hom(X,Y ) ∼= 0. Choose X ′ and Y ′ lifts
of X,Y respectively in Ch−(R). Since we wish to prove a statement in D we may
choose X ′ such that X ′

i = 0 for i < 0 and each X ′
i is projective and Y ′ such that

Y ′
j = 0 for j > −1 and each Y ′

j is injective. Then clearly HomCh(R)(X
′, Y ′) = 0,

since X ′ and Y ′ are not homotopy equivalent (unless they are both 0, in which case
the claim still follows) we obtain that 0 ∼= HomCh(R)(X

′, Y ′) ∼= HomK−(R)(X
′, Y ′) ∼=

Hom(X,Y ).
(b) Clearly D≥0[1] ⊆ D≥0 and D≤0[−1] ⊆ D≤0.
(c) Consider X ∈ D then by adjunction we obtain a map X → τ≤−1X and by checking

on the long exact sequence on homology groups we observe the fibre of this map is
in D≥0.

□

We conclude with the following:

Proposition 7. Let D = D−(R) and (D≤0,D≥0) be as above, then D♡ H0−−→
≃

ModR.

Proof. It is clear from the definitions that D♡ is the full subcategory of D spanned by

complexes X such that Hi(X) ≃

{
M ∈ModR i = 0

0 else
. Hence clearly H0 is essentially

surjective. We also have a functor ModR
i−→ D given by sending a module M to the

chain complex M̃ which has M in degree 0 and 0 everywhere else. Clearly i factors
through D♡ and one can check i ◦H0 ≃ 1Ab and H0 ◦ i ≃ 1D♡ .

□

6. t-structure on Sp

In contrast to the previous section we will now develop the necessary machinery to
construct t-structures on “the category of spectrum objects in a presentable stable ∞-
category C” of which Sp := Sp(An∗) is a special case.
In light of Proposition 1 we observe that t-structures give rise to localisations, in fact
they correspond to a particular class of localisation.

Recall: If a full subcategory C′ of a stable ∞-category C is stable under extensions if
for all fiber sequences

X → Y → Z

in C it holds that

X,Z ∈ C′ =⇒ Y ∈ C′.
The following proposition will be used to produce a t-structure on spectra.

Proposition 8. Let C be a stable ∞-category, let L : C → C be a localisation functor.
Then the following are equivalent:

(a) The essential image of L is closed under extensions.
(b) The full subcategories C≥0 := {A : LA ≃ 0} and C≤−1 := {A : LA ≃ A} determines

a t-structure on C.

Proof. We will only show a) =⇒ b) as this is what we will make use of. Suppose the
essential image of L is closed under extensions. For A ∈ C and B ∈ LC we will show the
natural map Ext1C(LA,B)→ Ext1C(A,B) is injective. We consider ϕ ∈ Ext1C(LA,B) and
note by iteratively taking fibres we may produce a triangle

B → C
g−→ LA

ϕ−→ B[1].
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Since B and LA are in LC and the image of L is closed under extensions we conclude
C ∈ LC. Suppose the image of ϕ in Ext1C(A,B) is trivial, then by the universal property
of the fibre the unit map A→ LA factors as

A
f−→ C

g−→ LA.

Now we apply L to this diagram and since L is already local we observe that g admits
a section and thus ϕ = 0 (yielding the desired injectivity).
Now we will verify the axioms for our candidate t-structure:

(a) If X ∈ C≥0 and Y ∈ C≤−1, then

Ext0C(X,Y ) ≃ Ext0C(LX, Y ) ≃ Ext0C(0, Y ) ≃ 0.

(b) Since C≤−1 is a localisation of C it is stable under limits, hence C≤−1[−1] ⊆ C≤−1.
Furthermore since L preserves colimits LX ≃ 0 =⇒ L(X[1]) ≃ 0 and hence
C≥0[1] ⊆ C≥0.

(c) For X ∈ C, by taking the fibre of the unit map X → LX we produce a fibre sequence
X ′ → X → LX and now we claim X ′ ∈ C≥0. It suffices to show for all Y ∈ LC that
Ext0C(LX

′, Y ) = 0. Since Y is local we have isomorphisms

Ext0C(LX
′, Y ) ≃ Ext0C(X

′, Y ) ≃ Ext1C(X
′[1], Y )

where the last equivalence comes from the definition of ExtiC . We now consider the
exact sequence

Ext0C(LX, Y )
f−→ Ext0C(X,Y )

0−→ Ext1C(X
′[1], Y )→ Ext1C(LX, Y )

f ′

↪−→ Ext1C(X,Y )

where f is bijective since Y is local (equivalently by adjunction) and f ′ is injective
by assumption, hence

0 ≃ Ext1C(X
′[1], Y ) ≃ Ext0C(LX

′, Y )

and we are done.

□

Proposition 9. Let C be a presentable stable ∞-category. Suppose there exists a full
subcategory C′ ⊆ C which is presentable, closed under small colimits and closed under
extensions, then there exists6 a t-structure on C such that C′ =: C≥0.

Proof. We will state some results from HTT to bootstrap the proof and then conclude
by Proposition 8. We fix X ∈ C and let C′/X denote the fibered product C/X ×C C′. By

HTT.5.5.3.12 C′/X is presentable and in particular has a final object Y
f−→ X. It follows

that composition with f induces an equivalence

MapC(Z, Y )→ MapC(Z,X) ∀Z ∈ C′.

Then by dualising Fact 2 we observe C′ is a colocalisation of C. Since C′ is stable under
extensions the dual of Proposition 8 gives the existence of a uniquely determined
t-structure on C such that C′ =: C≥0. □

Proposition 10. Let C = Sp be the ∞-category of spectra and let C≤−1 be the full
subcategory spanned by objects X such that Ω∞X ≃ ∗. Then C≤−1 determines7 an
accessible t-structure on Sp.

6This t-structure is by definition accessible.
7Recall Remark 1.
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Proof. We recall the functor Ω∞ : Sp→ An admits a left adjoint Σ∞
+ . We recall the set

{Sn}n∈N∪{0} generates An under colimits. Then we observe E ∈ Sp≤−1 if and only if
for each n the spaces:

MapAn(S
n,Ω∞E) ≃ MapSp(Σ

∞
+ Sn, X)

are contractible. Then let Sp≥0 be the smallest full subcategory of Sp which is stable
under colimits, extensions and contains Σ∞

+ Sn. Then by Proposition 9 Sp≥0 is the
data of an accessible t-structure on Sp. □

Now we compute its heart:

Proposition 11. There is an equivalence of categories Sp♡
π0−→
≃

Ab with the category of

abelian groups.

Proof. A spectrum E is in Sp♡ if and only if it is an Eilenberg-MacLane spectrum
HA = {K(A,n)}n∈N. We recall that

HomAb(A,B) ∼= MapAn∗(K(A,n),K(B,n))

for all n ∈ N and hence:

MapSp(HA,HB) ≃ lim
n

MapAn∗(K(A,n),K(B,n)) ≃ HomAb(A,B).

We conclude the functor π0 is essentially surjective as well as fully faithful and hence an
equivalence. □
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