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Introduction

The purpose of these notes is to give a short exposition of the nec-
essary theory required to state the definition of a scheme. We shall
begin with a discussion of some "classical" ideas in algebraic ge-
ometry. Beginning with affine space and culminating with the
Nullstellensatz1. Following this we shall discuss some basic point 1 https://en.wikipedia.org/wiki/

Hilbert%27s_Nullstellensatzset topology and define the Zariski topology on affine space. Next
we will define sheaves and give some examples in order to help the
reader ingest this "tricky" subject. Then we shall discuss localisation
of commutative rings.

The following chapters will draw on all of the preceding ideas
in order to define affine schemes, schemes and locally ringed
spaces. We shall prove that affine schemes are dual to commutative
rings. We shall also prove that SpecZ is terminal in the category of
schemes, showing the form of a standard argument.

Knowledge of category theory shall be assumed.

Notation

⟨S⟩ The ideal generated by elements of the subset S.
⊴ Indicates an ideal of a ring.
1X The identity morphism of an object X in its appropriate category.
C(X, Y) The collection of morphisms from an object X to an object Y in the category C.
Set The category of sets and functions.
Top The category of Topological spaces and continuous maps.
Sδ The set S regarded as a topological space with the discrete topology.
CRing The category of commutative unital rings and unit preserving ring homomorphisms.
Ab The category of abelian groups and group homomorphisms.
∗ The one point set.

Please email any mistakes to: davidmb2018@gmail.com

https://en.wikipedia.org/wiki/Hilbert%27s_Nullstellensatz
https://en.wikipedia.org/wiki/Hilbert%27s_Nullstellensatz


Classical Algebraic Geometry

Let k be an algebraically closed field2. We shall consider the ring 2 The reader is welcome to consider C.

k[x1, . . . , xn] which is the polynomial ring in n commuting variables
x1, . . . , xn. Each f ∈ k[x1, . . . , xn] induces a function kn → k by
substituting an n-tuple (α1, . . . , αn) into the variables in f . This
space kn we call An

k or n-dimensional affine space over k. For a
polynomial f ∈ k[x1, . . . , xn] we define its vanishing set V( f ).
That is points in An

k (which we shall now only call An) at which f
evaluates to 0. Formally:

V( f ) := {α ∈ An| f (α) = 0}.

Of course any polynomial divisible by f will also vanish on V( f )
and thus V( f ) = V(⟨ f ⟩). We shall see soon that is it "more natural"
to think of the vanishing set of an ideal in k[x1, . . . , xn] than just a
single polynomial.

We define an algebraic subset of An as a subset Λ ⊆ An such
that Λ = V(a) for some ideal a⊴ k[x1, . . . , xn]. Here we note some
properties of V that shall be important later:

(a) For ideals a, b⊴ k[x1, . . . , xn] we have: V(a) ∪ V(b) = V(ab).
That is: "the finite unions of algebraic subsets is an algebraic
subset".

(b) For any set of ideals {ai} of k[x1, . . . , xn] we have⋂
V(ai) = V

(
∑ ai

)
.

That is: "the arbitrary intersection of algebraic subsets is is an
algebraic subset".

(c) V(0) = An and V(k[x1, . . . , xn]) = ∅, that is: "all of affine space
as well as the empty set is an algebraic subset".3 3 Do (a), (b), and (c) remind you of

anything?
A few things about commutative rings must be said before we

continue. An ideal a⊴ R is radical4 if and only if 4 I must apologise to non-commutative
ring theorists but I am afraid there are
only so many words.f n ∈ a =⇒ f ∈ a ∀ f ∈ R, for n ∈ N.

For some ideal a⊴ R we define the radical ideal completion of a:

√
a :=

⋂
radical ideals I⊇a

I.

Next we say a ring is reduced it has no nilpotent elements5. 5 So if the ring is artinian this is equiv-
alent to saying it has trivial Jacobson
radical.
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We take a moment to discuss another property of V. For ideals
a, b⊴ k[x1, . . . , xn] it holds that V(a) ⊆ V(b) ⇐⇒

√
a ⊇

√
b. In-

tuitively this should make sense since if we want more polynomials
to vanish clearly this will be satisfied by fewer points6. 6 This relation may lead one to con-

clude that V is a contravariant func-
tor from the category of ideals of
k[x1, . . . , xn] and the category of alge-
braic subsets of An. This is true.

For an algebraic subset Λ ⊆ An we define the vanishing ideal of
Λ as:

I(Λ) := { f ∈ k[x1, . . . , xn]| f (λ) = 0 ∀λ ∈ Λ}.

For an algebraic subset Λ ⊆ An one may wonder what V(I(Λ)) is.
We note Λ ⊆ V(I(Λ)) but it is not obvious what this is. One may
also wonder I(V(a)) is for a⊴ k[x1, . . . , xn]. We observe that

√
a ⊆

I(V(a)) since k[x1, . . . , xn] is reduced. Hilbert’s Nullstellensatz says
that in an algebraically closed field that

√
a = I(V(a))7. This yields 7 This can be interpreted as saying that

I and V give an adjunction between
the category of ideals of k[x1, . . . , xn]
and the category of algebraic subsets
of An.

a 1-1 correspondence between radical ideals of k[x1, . . . , xn] and
algebraic subsets of An.

An algebraic subset Λ ⊆ An is irreducible if it is not the union
of two distinct algebraic subsets - that is to say it is the vanishing
set of a prime ideal. The Nullstellensatz further yields a 1-1 corre-
spondence8 between prime ideals of k[x1, . . . , xn] and irreducible 8 Both of these so called "1-1 corre-

spondences" are in fact equivalences of
categories.

algebraic subsets of An.
Let X ⊆ An be an algebraic subset - we may wish to understand

all polynomial functions X → k. An immediate issue is that un-
equal polynomials p, q ∈ k[x1, . . . , xn] may induce the same function
X → k. For example suppose f ∈ k[x1, . . . , xn] and 0 ̸= g ∈ I(X),
then f : X → k and ( f + g) : X → k are the same function (as they
agree on all inputs). To avoid this we define the coordinate ring9 of 9 These have the following nice prop-

erty. Two algebraic subsets X, Y are
isomorphic (whatever that may mean)
if and only if k[X] ∼= k[Y].

X:
k[X] := k[x1, . . . , xn]⧸I(X).

This ring can be thought of as "equivalence classes of polynomial
maps X → k". Thus we can assign to each algebraic subset X a
ring10 k[X]. The Nullstellensatz yields a 1-1 correspondence be- 10 In fact a k-algebra.

tween radical ideals of k[x1, . . . , xn] and finitely generated reduced
k-algebras. It also yields a 1-1 correspondence between prime ideals
of k[x1, . . . , xn] and finitely generated k-algebras which are integral
domains.

We now take a moment to look back at the above story. We con-
sidered a polynomial ring in finitely many variables over an alge-
braically closed field. The fact that such rings are noetherian and
poses no zero-divisors made the theory particularly pleasant how-
ever we have relatively few examples. In what is to come we shall
generalise this story to arbitrary commutative rings.



Some Point Set Topology

We define a topological space as a set equipped with a topology. A
topology on a set X is a subset Top(X) ⊆ P(X) such that:

(a) For a finite subset {Ui} ⊆ Top(X) the intersection⋂
Ui ∈ Top(X).

That is to say "the intersection of finitely many open sets is
open".

(b) For an arbitrary subset11 {Ui}i∈I ⊆ Top(X) the union 11 Where I is some index set.⋃
Ui ∈ Top(X).

That is to say "the arbitrary union of open sets is open".

(c) Both X and ∅ are in Top(X).

For a topological space we call an element U ∈ Top(X) an open
set. A subset C ⊆ X is closed if its the complement X \ C is open.
Hence we can dualise the axioms for open sets to obtain axioms for
closed sets. A subset Pot(X) ⊂ P(X) is the set of closed sets of a
topological space if and only if:

(a’) For a finite subset {Ci} ⊆ Pot(X) the union⋃
Ci ∈ Pot(X).

That is to say "the union of finitely many closed sets is closed".

(b’) For an arbitrary subset {Ci}i∈I ⊆ Pot(X) the intersection⋂
Ci ∈ Pot(X).

That is to say "the arbitrary intersection of closed sets is closed".12 12 We obtained (a’) and (b’) by applying
De Morgan’s laws.

(c’) Both ∅ and X are in Pot(X).

Suppose X is a set and Pot(X) ⊆ P(X) satisfies (a’), (b’) and (c’)
then Pot(X) uniquely determines a topology

Top(X) = {X \ C| C ∈ Pot(X)}

on X.
We return for a moment to affine space. Recall that the the al-

gebraic subsets of An satisfy (a’), (b’) and (c’). The topology that
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arises from treating the algebraic subsets as closed sets is called the
Zariski Topology.

Let X be a topological space, then for a subset S ⊆ X we define
its closure to be:

S :=
⋂

closed sets C⊇S

C.

Topology is in some sense an axiomatisation of "closeness". We say
a point x ∈ X is "close" to a subset S ⊆ X if and only if x ∈ S. What
are the natural morphisms that would preserve this structure?
Continuous maps!

Let X, Y be topological spaces. The following are equivalent for a
set map f : X → Y:

i The map f is continuous.

ii For any subset T ⊆ Y one has f−1(T) ⊆ f−1(T).13 13 Where the closure of T is taken in Y
and the closure of f−1(T) is taken in
X.iii For any closed subset C ⊆ Y, the preimage f−1(C) is closed.

iv For any open set U ⊆ Y, the preimage f−1(U ) is open.14 14 This characterisation is most often
used.

We observe that (ii) implies that continuous maps take "close
points" to "close points". That is suppose S ⊆ X and x ∈ S then
f (x) ∈ f (S).

For each topological space X we can endow Top(X) with the
structure of a category as follows. For U ,V ∈ Top(X) we define:

Hom(U ,V) :=

{iVU}, if U ⊆ V ,

∅, otherwise.

That is to say if U ⊆ V then Hom(U ,V) is the inclusion map
U ↪→ V and Hom(U ,V) is empty otherwise. Since ∀U ∈ Top(X)

it holds that U ⊆ U there are identity arrows. Composition in-
herits its associativity from the normal composition of continuous
functions15. 15 Which in turn inherits its associativ-

ity from the normal composition of set
maps.



Some Sheaf Theory

As is customary in this subject we begin with presheaves. Let X
be a topological space, then a presheaf taking values in a category
C16 is a contravariant functor from Top(X) to C. Suppose F is a 16 There are some requirements of the

category C - for example it must have a
terminal object. In these notes we shall
only consider sheaves of sets, abelian
groups, modules or rings.

presheaf on X, then its signature is

F : Top(X)op → C.

We shall unpack this definition, the functoriality of F implies the
following. Suppose U ⊆ V ⊆ W are open sets in X, then there exist
"restriction maps" ρVU : F (V) → F (U ), ρWV : F (W) → F (V), and
ρWU : F (W) → F (U ) such that ρVU ◦ ρWV = ρWU . Furthermore for any
U ∈ Top(X) we have ρUU = 1U .

Example 1. Let X = R, then we shall define a presheaf of sets as
follows.

We write: F : Top(X)op → Set

U 7→ {bounded functions U → R},

and the restriction maps are the usual restriction of functions17. We 17 Hence this example motivates the
term "restriction map".notice for each open set U and each σ ∈ F (U ) that ρUU (σ) = σ.

Suppose U ⊆ V ⊆ W are open sets in X. From the definition of F
we note that:

ρWU : F (W) → F (U )
σ 7→ σ

∣∣
U .

Then for any σ ∈ F (W) we have that σ|V |U = σ|U and hence
ρVU ◦ ρWV = ρWU .

Soon we shall see that sheaves allow us to aggregate "local infor-
mation" in order to obtain "global information". For this we need
the notion of an open cover. Let X be a topological space, then a
family of open sets {Ui} is an open cover of a subset U if and only
if:

U ⊆
⋃

Ui.

For the purpose of working with sheaves we will want it to be the
case that U =

⋃Ui but this is not a problem. From any open cover
{Ui} we can extract an "exact" open cover by defining U ′

i := Ui ∩ U
and using the set {U ′

i }. The picture is:
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We are now ready to define a sheaf! A contravariant functor F :
Top(X)op → C is a sheaf if and only if:

(a) Suppose {Ui}i∈I is an open cover of some open set U ⊆ X.
Further suppose we have sections18 σi ∈ F (Ui) such that: 18 The elements of F (U ) for some open

set U are referred to as "sections of F
over U ". This nomenclature shall be
justified in an example below.

σi
∣∣
Ui∩Uj

= σj
∣∣
Ui∩Uj

∀i, j ∈ I,

then ∃σ ∈ F (U ) : σ|Ui
= σi ∀i ∈ I.

(b) Suppose {Ui}i∈I is an open cover of some open set U ⊆ X;
σ, τ ∈ F (U ) such that σ|Ui

= τ|Ui
∀i ∈ I then σ = τ.

More concisely we can say F satisfies the following condition.

(a’) Suppose {Ui}i∈I is an open cover of some open set U ⊆ X.
Further suppose we have sections σi ∈ F (Ui) such that:

σi
∣∣
Ui∩Uj

= σj
∣∣
Ui∩Uj

∀i, j ∈ I,

then ∃!σ ∈ F (U ) : σ|Ui
= σi ∀i ∈ I.

The point here is that when we have a bunch of sections {σi} that
agree on overlaps then we can "glue" them together to produce a
unique section σ over U . In this way we are able to assign alge-
braic information to topological spaces in a way that respects their
structure. Now we shall discuss some examples.

Example 2 (Sheaf of continuous functions). Let X = C, then19 we 19 We could use any topological space
for this example.define:

F : Top(X)op → CRing

U 7→ {continuous functions U → R}20

We shall prove this is a sheaf. Let U ∈ Top(X) and {Ui}i∈I be an 20 We could also write this as U 7→
Top(U , R).open cover of U . Further suppose:

∃σi ∈ F (Ui) : σi
∣∣
Ui∩Uj

= σj
∣∣
Ui∩Uj

∀i, j ∈ I.

We must prove ∃!σ ∈ F (U ) : σ|Ui
= σi ∀i ∈ I.

Existence of gluing: We define:

σ : U → R

u 7→ σi(u) for u ∈ Ui.
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First we note this map is well defined precisely because the sections
{σi} agree on intersections. Next we note that that σ is continuous
since each σi is continuous. Thus σ ∈ F (U ) and satisfies

σ
∣∣
Ui

= σi ∀i ∈ I.

Uniqueness of gluing: Suppose ∃τ ∈ F (U ) such that τ|Ui
= σi ∀i ∈

I. Then for each u ∈ U we observe:

σ(u) = σi(u) = τ(u)

for an appropriate i and thus we conclude τ = σ.

Example 3 (Sheaf of continuous sections). Let X = R, Z = {1, 2, 3},
and

p : X × Zδ → X

(x, z) 7→ x.

For a subset S ⊆ X a "section of p over U " is a continuous map
σ : S → X × Zδ such that p ◦ σ = 1S. We define:

F : Top(X)op → Set

U 7→ {sections of p over U},

we shall prove this is a sheaf. It is a presheaf since the restriction
of a function to its domain is itself and that the composition of
iterated restrictions to smaller subsets of the domain is the same as
just restricting to the smallest subset. Let U ∈ Top(X) and {Ui}i∈I

be an open cover of U . Further suppose:

∃σi ∈ F (Ui) : σi
∣∣
Ui∩Uj

= σj
∣∣
Ui∩Uj

∀i, j ∈ I.

We must prove ∃!σ ∈ F (U ) : σ|Ui
= σi ∀i ∈ I.

Existence of gluing: We define:

σ : U → R

u 7→ σi(u) for u ∈ Ui.

First we note this map is well defined precisely because the sections
{σi} agree on intersections. Next we note that that σ is a section of
p over U since each σi is.
Uniqueness of gluing: Suppose ∃τ ∈ F (U ) such that τ|Ui

= σi ∀i ∈
I. Then for each u ∈ U we observe:

σ(u) = σi(u) = τ(u)

for an appropriate i and thus we conclude τ = σ.
Let U := (−1, 1) then F (U ) = {σ1, σ2, σ3} where:

σi : U → X × Zδ

u 7→ (u, i) for i ∈ Z.
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However if we consider (−1, 1) \ {0} =: V . Then |F (V)| = 9 where
all sections are of the form:

σi,j : V → X × Zδ

v 7→

σi(v), v ∈ (0, 1)

σj(v), v ∈ (−1, 0)
for i, j ∈ Z.

It is notable that we were able to "detect" that V is not connected by
simply counting the sections of F over it.

There are many similar examples. For any continuous map f :
X → Y we can always define the sheaf21 of continuous sections of f 21 The sheaf of sections of a covering

space p : X̃ → X is often interesting.on Top(Y).

Example 4 (Skyscraper sheaf). Let X be a topological space, S a set
and x be a point in X. We define:

F : Top(X)op → Set

U 7→

S, x ∈ U
∗, otherwise.

In order to ease the proof that this is a sheaf we shall give it an
alternate description. Let s be a fixed element of S, then we write:

F : Top(X)op → Set

U 7→ {set maps U → S sending everything in U \ {x} to s}.22

22 It is often easier to work with
sheaves of functions than any alterna-
tive. Thus it could be worth exercising
some creativity to define one’s sheaves
to be sheaves of functions.

A moment of reflection will cause one to conclude that |F (U )| =
|S| if x ∈ U and |F (U )| = 1 otherwise. Thus our new definition is
"isomorphic23" to the old one. Let U ∈ Top(X) and {Ui}i∈I be an

23 We shall give a precise definition of a
morphism of sheaves soon.open cover of U . Further suppose:

∃σi ∈ F (Ui) : σi
∣∣
Ui∩Uj

= σj
∣∣
Ui∩Uj

∀i, j ∈ I.

We must prove ∃!σ ∈ F (U ) : σ|Ui
= σi ∀i ∈ I.

Existence of gluing: We define:

σ : U → S

u 7→ σi(u) for u ∈ Ui.

First we note this map is well defined precisely because the sections
{σi} agree on intersections. Next we note that that σ ∈ F (U ) since
each σi sends everything in Ui \ {x} to s.
Uniqueness of gluing: Suppose ∃τ ∈ F (U ) such that τ|Ui

= σi ∀i ∈
I. Then for each u ∈ U we observe:

σ(u) = σi(u) = τ(u)

for an appropriate i and thus we conclude τ = σ.
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We shall now explain why Example 1 fails to be a sheaf. Let
{Ui}i∈I be any open cover of R by bounded subsets. For each i we
consider the section

σi : Ui → R

u 7→ u.

These sections agree on intersections and if this construction was a
sheaf we would be entitled to glue them. However the identity map
on R is not a section over R since it is not bounded, thus it fails the
existence axiom.

Since sheaves and presheaves are functors their morphisms are
nothing but natural transformations. Let X be a topological space
and suppose F ,G : Top(X)op → C are (pre)sheaves. Then a
morphism of (pre)sheaves η : F → G is a family of morphisms
ηU : F (U ) → G(U ) in C indexed by the open sets of X such that the
following square commutes for any open sets U ⊆ V .

F (V) G(V)

F (V) G(V)

ηV

ηU

ρVU ϱVU

Suppose further that F ,G are sheaves of abelian groups. Then one
may be interested24 the kernel, cokernel and image of η. That is 24 For example when making use of

techniques from homological algebra.presheaves U 7→ ker(ηU ), U 7→ coker(ηU ), and U 7→ im(ηU ).
While it is always the case that ker(η) is always a sheaf, this need
not be the case for coker(η) and im(η) - in general they are only
presheaves. We shall now describe a method to canonically assign a
sheaf (that is unique up to isomorphism) to any presheaf.

Construction 1 (Stalk). Suppose that F is a (pre)sheaf on a topolog-
ical space X and x is a point in X. Further suppose we would like
to evaluate F at x. In general this is not possible since points need
not be open. Another consideration that doesn’t work would be to
evaluate F on

⋂
open sets U∋x

U but this also need not be open. Luckily

for us category theory provides an answer. We consider the dia-
gram of all the open sets containing x. In Euclidean space (namely
R2) this looks like25: 25 This is merely a representative

drawing, in reality this would look
more like a big tree.

We define the stalk of F at x to be the colimit26: 26 This has a pleasant implication.
Suppose F is a sheaf on a topological
space X and U is open in X. Then for
a point x ∈ U the stalk of F at x is
the same as the stalk of F|U at x. In
this sense the stalk is a purely local
construction.

Fx := lim−→
U∈Top(X)| U∋x

F (U ).

This can be characterised as:

Fx = {(U , σ)| x ∈ U ∈ Top(X), σ ∈ F (U )}⧸∼
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where:

(U , σ) ∼ (V , τ) ⇐⇒ ∃ open W ⊆ U ∩ V with x ∈ W : σ
∣∣
W = τ

∣∣
W .

Let F ,G be sheaves on a topological space X and suppose η :
F → G is a morphism of sheaves. Then η induces morphisms on
the stalks in the following way:

ηx : Fx → Gx

[(U , σ)] 7→ [(U , ηU (σ)].

Example 5. We shall solve a simple problem27 involving in stalks 27 This is a variant of an exercise given
to me Clark Barwick in a course he
and Jeff Hicks taught about sheaf
theory in Edinburgh.

in order to expose some of their properties. We let X = R and
consider the sheaf of continuous functions F on X. We define the
evaluation map:

e : Fx → R

[(U , σ)] 7→ σ(x).

The exercise is to prove this is not a bijection. First we observe that
e is a surjection since for any x ∈ R, open set U containing x and
any r ∈ R the map

U → R

u 7→ r

is in Fx. We shall explain how e fails to be an injection. Let x ∈ R

then as described above the constant map to 0 is in Fx. Let U be an
open set containing x, we define the map

σ : U → R

u 7→ u − x

and we claim [(U , 0)] ̸= [(U , σ)] in Fx. We observe that

{r ∈ R| 0(r) = σ(r)} = {x}

which is not open. Thus we conclude e is not injective.

We shall now define sheafification. Let F be a presheaf on a
topological space X. We define the étale space of F to be the set

Ét(F ) := ⨿
x∈X

Fx

endowed with the final topology such that

p : Ét(F ) → X

e 7→ x for e ∈ Fx

is continuous. We define the sheafification of F to be the sheaf of
sections of p, which is denoted F+. For any sheaf G we have that
G+ ∼= G.

From this we observe that a sheaf is uniquely determined by its
stalks, we record this in the following result.
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Proposition 1. Let F ,G be sheaves on a topological space X and
suppose η : F → G is a morphism of sheaves. Then η is an iso-
morphism if and only if each induced map ηx : Fx → Gx is an
isomorphism.

We shall conclude this section with two important constructions.

Construction 2 (Pushforward Sheaf). Let F be a sheaf taking values
in a category C on a topological space X and let f : X → Y be
a continuous map of topological spaces. Then we can define the
presheaf:

f∗F : Top(Y)op → C
U 7→ F ( f−1(U )).

We shall prove this is a sheaf. Let U ∈ Top(Y) and {Ui}i∈I be an
open cover of U . Further suppose:

∃σi ∈ f∗F (Ui) : σi
∣∣
Ui∩Uj

= σj
∣∣
Ui∩Uj

∀i, j ∈ I. (⋆)

We write V := f−1(U ) and Vi := f−1(Ui) and observe that {Vi}i∈I

is an open cover of V since the inverse image respects unions. Then
we notice (⋆) is equivalent to the existence of sections

τi ∈ F (Vi) : τi
∣∣
Vi∩Vj

= τj
∣∣
Vi∩Vj

∀i, j ∈ I,

and thus ∃!τ ∈ F (V) : τ|Vi
= τi ∀i ∈ I since F is a sheaf. Hence

there exists a unique section σ ∈ f∗F (U ) : σ|Ui
= σi ∀i ∈ I.

Construction 3 (Pullback sheaf). Let G be a sheaf taking values
in a category C on a topological space Y and let f : X → Y be
a continuous map of topological spaces. We consider the space
X̃ := ⨿

x∈X
G f x endowed with the final topology such that

p : X̃ → X

e 7→ x for e ∈ G f x

is continuous. Then we say the sheaf f−1G is the sheaf of sections
of p.



Localisation for Commutative Rings

Let R ∈ CRing, then a subset S ⊆ R is a multiplicative set if and
only if:

x, y ∈ S =⇒ xy ∈ S.

Let f ∈ R then we observe that { f n| n ∈ N} is a multiplicative set.
Recall that a proper ideal p ◁ R is prime if and only if:

ab ∈ p =⇒ (a ∈ p) ∪ (b ∈ p).

Let p ◁ R be a prime ideal, then observe R \ p is a multiplicative set.

Construction 4. Let S ⊆ R be a multiplicative subset of an integral
domain28 R. Then we consider the polynomial ring in |S| variables 28 In this "nice" case we can give a

concrete construction.over R. We can write this as

R[S] :=
⊗
s∈S

R[xs].

We wish to enforce the relation that sxs = 1 and this is achieved by
quotienting by the ideal ⟨{sxs − 1| s ∈ S}⟩. We define

S−1R := R[S]⧸⟨{sxs − 1| s ∈ S}⟩.

The relations that generate the ideal force each xs to behave as a
multiplicative inverse for s. This ring has the universal property
that any ring homomorphism ϕ : R → L that carries each s ∈ S to
an invertible element factors through S−1R. That is to say:

R S−1R

L

∃!ψ

ι

ϕ

commutes, where

ι : R ↪→ S−1R

r 7→ r
1

.

Example 6. Let R = Z⧸10Z and consider the multiplicative set
S = {2, 4, 8, 6}. Then if we follow Construction 4 we obtain the ring

S−1R = { r
2n | r ∈ R, n ∈ N}

where
a

2n
b

2m =
ab

2mn (mod 10)
.
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The case where R has zero divisors requires a more fastidious
treatment. Suppose ∃ f , g ∈ R : f g = 0. Further suppose S is a
multiplicative set that contains f , then in S−1R we observe

g
1
=

f g
f

=
0
f
= 0.

Hence we must require the map R → S−1R to carry g to 0. We shall
now introduce the more robust construction.

Construction 5. Let S ⊆ R be a multiplicative subset, we consider
R × S. We define an equivalence relation:

(r1, s1) ∼ (r2, s2) ⇐⇒ ∃t ∈ S : t(r1s2 − r2s1) = 0.

Then we define29 29 This approach agrees with Construc-
tion 4 when R is an integral domain.S−1R := (R × S)⧸∼

and the equivalence class of (r, s) is denoted r
s . It is notable that

the map j : R → S−1R is an injection if and only if S contains no
zero-divisors.

Construction 6 (Functoriality of Localisation). Let S ⊆ R but a
multiplicative set, and ϕ : R → T be a ring map. By properties of
ring homomorphisms ϕ(S) ⊆ T is a multiplicative subset. Thus we
can define:

ϕ : S−1R → ϕ(S)−1T

r
s
7→ ϕ(r)

ϕ(s)
.

We say that ϕ is the localisation of ϕ.

We shall conclude this section with two particular localisations
that shall be used later.

Let f ∈ R then we shall fix the notation

R f := { f n| n ∈ N}−1R,

the ring where f is invertible.
Suppose p⊴ R is a prime ideal, then we shall also fix

Rp := (R \ p)−1R.

This ring has a unique maximal ideal p and hence is local.



The Spectrum of a Ring

The spectrum of a commutative ring R is defined to be the set of
prime ideals of R, that is:

SpecR := {p ◁ R| p is prime}.

We shall endow this space with a topology, emulating the Zariski
topology on An

k . For f ∈ R we define30 the vanishing set of f as the 30 It may be unclear how this is a "van-
ishing set". Many ideas in algebraic
geometry require one to consider the
field Rp⧸p. Then we observe f is in the

kernel of Rp → Rp⧸p if and only if
p ∈ V( f ).

set of prime ideals containing f , that is:

V( f ) := {p ∈ SpecR| f ∈ p}.

We can extend this definition to ideals of R since V( f ) = V(⟨ f ⟩). It
holds that:

(a) For ideals a, b⊴ R we have V(a) ∪ V(b) = V(ab).

(b) For any set of ideals {ai} we have
⋂

V(ai) = V (∑ ai).

(c) V(0) = SpecR and V(R) = ∅.

Thus we can endow SpecR with the topology where the closed
sets are exactly V(a) for some a⊴ R. This specifies open sets of the
form

D( f ) := {p ∈ SpecR| f ̸∈ p}

for f ∈ R. These are referred to as the distinguished open sets.
We shall now define a sheaf of rings, resulting in a familiar con-

struction. For a ring R we define its structure sheaf as the sheaf
with stalk Rp at each point p ∈ SpecR. We denote the structure
sheaf associated to a ring R as OSpecR. Consider the set ⨿

p∈SpecR
Rp

endowed with the final topology such that the map

p : ⨿
p∈SpecR

Rp → SpecR

f 7→ p for f ∈ Rp.

Then OSpecR is nothing but the sheaf of sections of the map p.
It is easy to characterise the sections over a distinguished open

set
OSpecR(D( f )) = R f

for f ∈ R. Furthermore OSpecR(SpecR) = R, thus we can always
recover a ring from its spectrum.

Next we shall describe the category that the spectrums call
home.



The Category of Locally Ringed Spaces

We recall from the last chapter that the spectrum of a ring is a topo-
logical space with a sheaf of rings such that each stalk is a local
ring.

For two local rings (R,m), (S, n) then a local ring homomorphism
is a ring map ϕ : R → S such that ϕ(m) ⊆ n.

We define the category of locally ringed spaces.

• Its objects are topological spaces equipped with sheaves of rings
such that each stalk is local,

• a morphism from (X,FX) to (Y,FY) consists of a pair (π, π#)

where π : X → Y is a continuous map of topological spaces
and π# : FY → π∗FX is a morphism of sheaves such that each
induced map on the stalks is a local ring homomorphism.



The Category of Affine Schemes

An affine scheme is a locally ringed space that is isomorphic to
(SpecR,OSpecR) for some ring R. The category of affine schemes,
denoted ASch, is a full subcategory of locally ringed spaces.

Suppose that ϕ : R → T is a map of rings. Then for each p ∈
SpecT we have ϕ−1(p) ∈ SpecR. That is to say31 the preimage of a 31 This is why the spectrum is defined

to be the prime ideals and not the
maximal ideals, the preimage of a
maximal ideal need not be maximal.

prime ideal under a ring homomorphism is a prime ideal.
We define a map of topological spaces

π : SpecT → SpecR

p 7→ ϕ−1(p)

Consider a closed set V(a) ⊆ SpecR, its preimage in SpecT is
V(ϕ(a)) since the direct image of a ring map respects containment
of ideals. Since the preimage of a closed set is closed we conclude π

is continuous.
Furthermore our map ϕ induces maps OSpecT(U ) → π∗OSpecR(U )

for each open set U ∈ SpecT since the sections of the structure sheaf
over an open set are simply localisations of the ring T. Thus ϕ in-
duces a morphism of a sheaves π# : OSpecT → π∗OSpecR.

All morphisms of affine schemes SpecT → SpecR are pairs π, π#

induced by some ring map R → T.
Suppose we had a morphism π : SpecT → SpecR then we can

recover the ring map since it is exactly the map

OSpecR(SpecR) → π∗OSpecT(SpecT).

That is to say that for two commutative rings R, T we have

CRing(R, T) ∼= ASch(SpecT, SpecR).

Furthermore, for a ring R we have that OSpecR(SpecR) ∼= R and for
an affine scheme SpecR that Spec(OSpecR(SpecR)) ∼= SpecR. We
conclude that the category of affine schemes is equivalent to the
opposite category of commutative rings.



Schemes

A scheme is a locally ringed space X,OX such that for each point
x ∈ X there exists an open neighbourhood x ∈ U ∈ Top(X)

such that (U ,OX |U ) ∼= (SpecR,OSpecR) for some R ∈ CRing. This
is equivalent to saying that X,OX admits an open cover by affine
schemes. A useful result regarding general schemes is that their
topology admits a base consisting of affine schemes. The category
of schemes, denoted Sch, is a full subcategory of locally ringed
spaces.

The general philosophy when working with schemes is as fol-
lows. Suppose we wanted to prove a scheme has a such-and-such
property. Commutative ring theory will be used to show that an
affine open cover have such and such property. Then the affine
schemes will be glued together in such a way that the property is
preserved, hence proving that the entire scheme has the property.

Proposition 2. Let X,OX be a schemes and suppose {Ui} is an
affine open cover of X. Further suppose that {πi : Ui → Y} is a
family of morphisms of schemes that agree on intersections. Then
there exists a unique morphism of schemes π : X → Y obtained by
gluing.

We shall conclude by using Proposition 2 to prove something in
the style of the general philosophy stated above.

Proposition 3. The scheme SpecZ is terminal in Sch.

Proof. We first note that since Z is initial in CRing and ASch is
equivalent to the opposite of CRing, that SpecZ is terminal in
ASch.

Let X,OX be a scheme. We must prove there exists a unique
morphism X → SpecZ.

Let {Ui} be an affine open cover of X. Then there exist unique
morphisms {πi : Ui → SpecZ}. We must prove these agree on
intersections. For i ̸= j we consider Ui ∩ Uj which is open and
thus Ui ∩ Uj =

⋃ Vl for affine schemes Vl . For each Vl we have
πi|Vl

= πj
∣∣
Vl

since there is only one map Vl → SpecZ. Thus

πi|Ui∩Uj
= πj

∣∣
Ui∩Uj

. Hence the family of maps {πi : Ui → SpecZ}
glue to a map π : X → SpecZ. Suppose ψ is a map X → SpecZ,
then

ψ
∣∣
Ui

= π
∣∣
Ui

∀i,

and thus ψ = π.
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