
Hermitian Symmetric Domains

Tejas Ramesh

May 5, 2025

Contents

1 A Quick Tour of Riemannian Geometry 2
1.1 Smooth Vector Fields and Smooth Tensor Fields . . . . . . . . . . . . . . . . . . . . 2
1.2 Riemannian Metric, Connections, Parallel Transport and Geodesics . . . . . . . . . 2

2 Hermitian Symmetric Spaces 4

3 Sectional Curvature 6

4 Hermitian Symmetric Domains 7

5 Symmetric Spaces as Lie Groups Modulo a Compact Subgroup 8

6 The Homomorphism from the Circle Group 9

7 Representations of U(1) 11

8 Classification of Hermitian Symmetric Domains in terms of Real Groups 12
.

These are the notes I made for the talk I gave on Hermitian symmetric domains and their classifi-
cation in terms of real algebraic groups, on 05-05-20205 at the MPI, as part of the student seminar
*Shimura Varieties and their Canonical Models* organized by Dave (David Bowman) and Fabi
(Fabian Schnelle). I follow Milne’s notes *Introduction to Shimura Varieties*, chapter 01. Some
material about differential geometry has been taken from Helgason’s *Differential Geometry, Lie
Groups and Symmetric Spaces*.

1



Motivation. As was dicussed in Talk 0, the upper half space H1 is interesting in that it is “the
mother of all y(N)”, where y(N) is the modular curve of level N . So, we want to understand the
type of a geoemtric object H1 is, which turns out to be that of hermitian symmetric domains. In
this talk, we focussed on defining them and classifying them using real algebraic groups, which
roughly mirrors connected Shimura data in its details.

1 A Quick Tour of Riemannian Geometry

1.1 Smooth Vector Fields and Smooth Tensor Fields

Recall. A topological manifold M is locally Euclidean, Hausdorff and second-countable. A smooth
structure on M is a sheaf OM of R-valued functions st (M,OM) is locally isomorphic to the Rn

with its sheaf of R-valued smooth functions. A smooth manifold is a topological manifold M with
a smooth structure OM .
Let M be a smooth manifold. A tangent vector to M at p is an R-derivation OM,p → R. The set of
all tangent vectors at p to M is the R-vector space TpM , a basis in local co-ordinates (x1, . . . , xn)
is given by,

∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p
,

and the dual basis is denoted dx1(p), . . . , dxn(p).
A continuous map between smooth manifolds is a smooth map if it is a morphism of ringed spaces,
ie f ∈ ON(U) for some U ⊆ N open, implies f ◦ α ∈ OM(α−1(U)).
Given a smooth map α : M → N , the differential of α at p ∈ M is,

dαp : TpM → Tα(p)N,

Xp 7→ Xp ◦ α∗.

A smooth vector field is a smooth section of the tangent bundle π : TM → M , (p, v) 7→ p. The set of
all smooth vector fields on M is denoted D1(M) and it is a R-vector space and a C∞(M)-manifold.
That is, it is a choice of a tangent vector Xp at each p ∈ M that varies smoothly over p ∈ M . An
r-tensor field is a choice of r-mulilinear map tp : TpM × . . .TpM → R for each p ∈ M , varying
smoothly over p ∈ M .
Note: we can define an (r, s)-tensor field in the same way. For example, a (1, 1)-tensor field is a
multi-linear map TpM × TpM

∗ → R for each p ∈ M st this choice varies smoothly over p ∈ M .

Remark 1. A smooth (1, 1)-tensor field is the same thing as a family of endomorphisms tp : TpM →
TpM where the choice of tp for each p ∈ M varies smoothly over p ∈ M .

1.2 Riemannian Metric, Connections, Parallel Transport and Geodesics

Definition 1.1. A Riemannian metric is a smooth 2-tensor field g st,

gp : TpM × TpM → R,

is symmetric and positive-definite for all p ∈ M . That is, a family of inner products gp st the choice
of gp is smooth over p ∈ M . A Riemannian manifold is a smooth manifold with a Riemannian
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metric. An isometry is a diffeomorphism between Riemannian manifolds that preserves the metrics,
ie φ : (M, g) → (N, h), st,

gp(u, v) = hφ(p)(dφp(u), dφp(v)).

We write the group of isometries of (M, g) as Is(M,g).

Definition 1.2. A Riemannian or Levi-Civita connection ∇ on a Riemannian manifold (M, g)
assigns to each X ∈ D1(M) an R-linear map,

∇X : D1(M) → D1(M),

st,

1. ∇fX+Y = f∇X +∇Y ,

2. ∇X(fY ) = f∇XY + (Xf)Y ,

3. X.g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ),

4. ∇XY −∇YX = [X, Y ],

FACT 1. There is a unique Riemannian connection on any given Riemannian manifold.

Definition 1.3. Given γ : [a, b] → M is a smooth curve, v ∈ TpM with p = γ(a); a parallel
transport of v along γ is a vector field X on M st,

1. Xp = v,

2. ∇γ′(t)X = 0 for all t ∈ [a, b],

Given a Riemannian manifold (M, g) with its unique connection ∇, we define its corresponding
curvature tensor R to be a map,

R : D1M3 → D1(M),

(X, Y, Z) 7→ R(X,Y )Z := ([∇X ,∇Y ]−∇[X,Y ])(Z).

Let γ : I → M be a smooth curve in M ; we say γ is a geodesic if ∇γ′(t)γ
′(t) = 0

FACT 2. For any connected Riemannian manifold (M, g) and v ∈ TpM , ∃! maximal geodesic
γ : I → M st γ(0) = p and γ′(0) = v. By a maximal geodesic we mean that it is a geodesic that is
NOT a proper restriction of any other geodesic.

Remark 2. Parallel transpost of tangent vectors along a geodesic: a vector in the tangent
space is transported along a geodesic as the unique vector field with constant length and making a
constant angle with the velocity vector of the geodesic.
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2 Hermitian Symmetric Spaces

Remark 3. A complex vector space is precisely a real vector space V with an R-linear endomor-
phism J : V → V st J2 = −idV , you need only specify how to do i.v, which is done by J(v).

Definition 2.1. a Hermitian form on a complex vector space (V, J) is,

(., .) : V × V → C,

st,

1. (., .) is a R-bi-linear map,

2. (Ju, v) = i(u, v),

3. (v, u) = (u, v)

Recall. Let f : Cn ⊃ U → C. We say, f is analytic if it admits a power series expansion in
a neighborhood of each point of U . We say f is holomorphic if it is holomorphic ie complex
differentiable separately in each variable. Hence, f is holomorphic iff it is analytic as in the case
n = 1.
A complex manifold is a topological manifold M with a sheaf OM of C-valued functions, st (M,OM)
is locally isomorphic to Cn with its sheaf of analytic functions. A continuous function between
complex manifolds is analytic if it is a morphism of ringed spaces.
A tangent vector at a point p of a complex manifold M is a C-derivation OM,p → C. Locally, a
basis is given by,

∂

∂z1
, . . . ,

∂

∂zn
.

We denote by M∞ the underlying 2n-dimensional smooth manifold of an n-dimensional complex
manifold. Then,

∂

∂x1

, . . . ,
∂

∂xn

,
∂

∂y1
, . . . ,

∂

∂yn
,

where,
∂

∂zi
=

1

2

(
∂

∂xi

− i
∂

∂yi
,

)
.

FACT 3. A smooth function α : M → N (for M,N complex manifolds) is analytic ⇐⇒ dαp is
C-linear for all p ∈ M .

Definition 2.2. An almost complex structure on a smooth manifold M is a smooth (1, 1)-tensor
field J = (Jp)p∈M st J2

p = −1 for all p ∈ M . As noted above we think of the Jp as R-linear
endomorphisms of TpM st p 7→ Jp is smooth.
Either ways, it is just a smoothly varying family of C-linear structures on the tangent spaces of M .

Remark 4. Every complex manifold is an almost complex manifold, we take Jp to all be multipli-
cation by i.
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Definition 2.3. Let M be an (almost) complex manifold. Then, a Heremitian metric on M is a
Riemannian metric g st,

g(JX, JY ) = g(X, Y ),

for all X, Y ∈ D1(M).

Remark 5. For each p ∈ M , gp is the real part of a unique hermitian form hp on TpM .

Definition 2.4. A Hermitian manifold is a complex manifold M with a Hermitian metric g. The
automorphism group of a Hermitian manifold is denoted Is(M, g) and consists of all holomorphic
isometries on (M, g). The group of automorphisms of a complex manifold M is denoted Hol(M).
Note,

Is(M, g) = Is(M∞, g) ∩ Hol(M).

A Hermitian manifold (M, g) is homogeneous if Is(M, g) acts transitively on M . It is symmetric
if it is homogeneous and there is a symmetry sp at some p in M , ie sp is a automorphism of the
manifold st s2p = 1 and p is its only fixed point in some neighborhood of p. A connected symmetric
Hermitian manifold is called a Hermitian symmetric space.

Example. (Upper Half Plane) Consider the complex upper half plane H1 := {z ∈ C : Im(z) > 0}
with a metric g given by,

gp(x1 + iy1, x2 + iy2) :=
x1x2 + y1y2

y2
.

It is a complex manifold as it is open in C. One can check that this g is indeed a Riemannian metric
that is invariant under J given by multiplication by i. Hence (H1, g) is a Heremitian manifold.
Note that a Möbius transformation on C is any,

C → C : z 7→ az + b

cz + d
,

where a, b, c, d ∈ R, ad− bc ̸= 0. Möbius transformations are conformal bijections on the extended
complex plane with inverses which are also Möbius transformations. They are diffeormophsims
since they are rational. The set of Möbius transformations that send H1 to H1 are precisely those
where ad − bc = 1, ie elements of SL2(R). These Möbius transformations preserve g (I think this
is rather finicky to check). So, SL2(R)/{±I} =: PSL2(R) ⊆ Is(H1, g). (I suppose?) one can show
that this is infact an equality since the elements of Is(H1, g) must preserve the metric g. Finally,
PSL2(R) acts on H1 by Möbius transformations, ie,(

a b
c d

)
.z :=

az + b

cz + d
.

This action is transitive since for any z = x+ iy ∈ H1, (note y > 0), you can go from i to z by,(√
y x√

y

0 1√
y

)
.i = z.

Symmetry at i: consider si : z 7→ −1
z
, then,

i 7→ −1

i
= i,
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z 7→ −1

z
7→ −1

−1/z
= z.

The only other point it fixes in C is −i, but that is NOT in H1.

Example. (Riemann Sphere) Consider the complex manifold P 1(C) endowed with the restriction
to the spehere of the standard metric g = dx2 + dy2 + dz2 on R3. This is a Hermitian manifold.
Rotations are holomorphic isometries and the group of rotations acts transitively on P 1(C); a
symmetry at the north pole is given by rotation by π about the axis connecting the north and the
south poles.

Example. Consider C/Λ ∼= C/Z (where Λ is some lattice in C) endowed with the standard metric
of C. Tranlations act transitively on C/Λ and a symmetry at 0 is given by z 7→ −z.

3 Sectional Curvature

Motivation. Sectional curvature is a well-defined intrinsic property of any Riemannian manifold
(M, g). We classify Hermitian symmetric spaces into compact, non-compact and euclidean types,
depending on whether they have positive curvature, negative curvature or zero curvature respec-
tively.

Recall. (Gauss Curvature of a Surface) The curvature at a point of a curve is the radius of the
best fitting circle to the curve at that point. For any point p on a surface, take a normal at p, and
consider planes containing the normal. The planes intersect the surface in a curve. Take maximum
Kmax,p and minimum Kmin,p of the signed curvatures of the curves at p, where the sign is positive
if the curve bends towards the normal and negative otherwise. The Gaussian curvature K(p) of
the surface at p is the product Kmax,p.Kmin,p. We say that the surface has positive curvature if
K(p) > 0, negative curvature if K(p) < 0 and zero curvature if K(p) = 0.

FACT 4. (Gauss’ Theorema Egregium) Gauss curvature is a well-defined intrinsic property of any
2-dimensional Riemannian manifold.

Definition 3.1. Let (M, g) be a Riemannian manifold and p ∈ M . Consider E a 2-dimensional
subspace of TpM and the geodesics in M through p tangent to E. The sectional curvature K(p, E)
of M at p wrt E is the Gauss curvature of the 2-dimensional sub-manifold of M cut out by these
geodesics.

Example. Intuitively, negative (resp. positive) curvature means, at each point, the geodesics
diverge (resp. converge).

1. H1 has negative curvature,

2. P 1(C) has positive curvature,

3. C/Λ has zero curvature.

6



4 Hermitian Symmetric Domains

There are threee families of Hermitian symmetric spaces, they are,

1. non-compact type: ones with negative curvature,

2. compact type: positive curvature,

3. Euclidean type: zero curvature.

FACT 5. Every Hermitian symmetric space decomposes into a product M0 ×M− ×M+ with M0

Euclidean, M− non-compact type and M+ compact type,

Definition 4.1. A Hermitian symmetric domain is a hermitian symmetric space of non-compact
type.

Example. (Siegel Upper Half Space) We generalize the Hermitian symmetric domain H1. The
Siegel upper half space of degree g denoted Hg is the set of all symmetric g×g matrices Z = X+ iY
with complex entries st Y is positive definite (ie xTY x > 0 for all x ̸= 0). The map,

Hg → Cg(g+1)/2,

(zi,j) 7→ (zi,j)j≥i,

identifies Hg with an open subset of Cg(g+1)/2, and is hence a complex manifold. The symplectic
group,

Sp2g(R) :=

{(
A B
C D

)
: ATC = CTA,BTD = DTB,DTA−BTC = Ig, A

TD − CTB = Ig

}
,

is the group of holomorphic automorphisms of Hg. This group acts on Hg by Möbius, ie,(
A B
C D

)
.Z := (AZ +B)(CZ +D)−1,

and this action is transitive(? I suppose it is similar to the g = 1 case) and a symmetry at iIg is
given by, (

0 −Ig
Ig 0

)
∈ Sp2g(R).

Hence Hg is a symmetric domain (ie a non-empty connected open subset of Cn for some n that
has a symmetry at each point). We want to give Hg a Hermitian metric and make it a Hermitain
symmetric domain. This is done by identifying Hg with Dg, noting that Hg and Dg are bounded
symmetric domains and hence are Hermitian symmetric domains with the Bergman metric (see
remark below).

Remark 6. 1. Define Dg to be the set of symmetric matrices Z with complex entries st Ig −
ZTZ is positive definite. The map (zij) 7→ (zij)j≥i) identifies Dg with a bounded domain in
Cg(g+1)/2. The map,

Z 7→ (Z − iIg).(Z + iIg)
−1,

is an isomorphism from Hg to Dg.
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2. Every bounded domain has a canonical hermitian metric called the Bergman metric;

3. Aby bounded domain with its Bergman metric has negative curvature. Hence, every bounded
symmetric domain is a hermitian symmetric domain with its Bergman metric.

5 Symmetric Spaces as Lie Groups Modulo a Compact

Subgroup

FACT 6. Given a (hermitian) symmetric space (M, g), the group Is(M, g) of (holomorphic) isome-
tries on (M, g) has a natural structure of a Lie group.

Theorem 5.1. Let (M, g) be a symmetric space and p ∈ M .
Let Kp be the subgroup of Is(M, g)+ that fixes p. Here, by Is(M, g)+ we mean the connected
component of Is(M, g) containing the neutral element.
Then,

1. Kp is compact,

2. the map,
Is(M, g)+/Kp → M,

a.Kp 7→ a.p,

is an isomorphism of smooth manifolds,

3. Is(M, g)+ acts transitively on M .

Proof. 1. let (M, g) be a Riemannian manifold,

2. the compact open topology makes Is(M, g) into a locally compact group for which the stabilizer
K ′

p of some point p ∈ M is compact,

3. the natural lie group structure on Is(M, g) is the unique lie group structure on Is(M, g) that
is compatibe with the compact open topology,

4. Is(M, g)/K ′
p → M is a homeomorphism and the map,

Is(M, g) → M,

a 7→ a.p,

is open,

5. writing,
Is(M, g) = ⊔l

i=1Is(M, g)+.ai,

for any two cosets, the open sets Is(M, g)+.ai.p, Is(M, g)+.aj.p are either disjoint or equal,

6. but M is connected, so these open sets must be all equal,
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7. hence Is(M, g)+ acts transitively on M ,

8. since Is(M, g)/K ′
p → M is a homeomorphism and Is(M, g)+ acts transitively on M , we have

that Is(M, g)+/Kp → M is a homeomorphism,

9. it is a diffeomorphism of smooth manifolds as it is a morphism of ringed spaces.

Proposition 5.1. Let (M, g) be a Hermitian symmetric domain. Then,

1. Is(M, g)+ = Is(M∞, g)+ = Hol(M)+,

2. Hol(M)+ acts transitively on M ,

3. the stabilizer Kp of p in Hol(M)+ is compact,

4. Hol(M)+/Kp
∼= M∞ in the category of smooth manifolds.

Proposition 5.2. Suppose (M, g) be a HSD and let h denote the Lie algebra of Hol(M)+. Then,
there is a unique connected algebraic subgroup G of GL(h) st G(R)+ ∼= Hol(M)+ (inside GL(h)).

Remark 7. The previous proposition is rather unexpected!
Let A be a connected real Lie group with Lie algebra a. There need NOT, in general, be a real
algebraic group G st G(R)+ = A. See discussion right above Proposition 1.7 in Milne’s notes for
Introduction to Shimura Varieties.

6 The Homomorphism from the Circle Group

Let U1 := {z ∈ C : |z| = 1}, be the circle group. Inspired the connected Shimura datum and
the previous proposition, we would like to consider homomorphisms up : U1 → Hol(D), for given
Hermitian symmetric domain D.

Example. Let p = i ∈ H1. Consider the homomorphism,

h : C× → SL2(R),

a+ ib 7→
(

a b
−b a

)
.

Note h(z) acts on the tangent space Ti(H1) as multiplication by a+ib
a−ib

, ie,

h(z).v :=
a+ ib

a− ib
.v,

for all v ∈ TiH1. For z ∈ U1, choose a square root
√
z, and set u(z) = h(

√
z) mod ± I. Then,

u : U1 → PSL2(R),

z 7→ h(
√
z),
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is a well-defined map, since u(z) does NOT depend on the choice of root of z as1 h(−1) = −I. So,
u is a homomorphism since h is. Moreover, u(z) acts on TiH1 as multiplication by z, ie,

u(z).v := z.v,

for all v ∈ TiH1.

Theorem 6.1. Let D be a Hermitian symmetric domain. Then, ∀ p ∈ D, ∃! homomorphism,

up : U1 → Hol(D),

st,

1. up(z) fixes p,

2. up(z) acts on TpM as multiplication by z.

Proof. 1. let (M, g) be a symmetric space and p ∈ M , then,

(a) the symmetry sp at p acts as −1 on TpM (ie (dsp)(Xp) = −Xp) and sp ◦γ = (t 7→ γ(−t)),
s2p = 1 implies (dsp)

2 = 1, so dsp(Xp) = ±Xp work on basis vectors, show that if it is
+Xp, then sp ◦ γ is a geodesic containing the maximal geodesic γ (use reflection), so it
has to be −Xp; the latter claim follows from the uniqueness of geodesics by showing that
t 7→ γ(−t) and sp ◦ γ have same initial point and initial velocity vector,

(b) the pair (M, g) is geodesically closed2, (if some maximal geodesic is not defined on all of
R, then sγ(t0) ◦ γ extends γ to a geodesic),

2. on a symmetric space (M, g), every canonical r-tensor3 with r odd is zero, (tp = tp ◦ (dsp)r =
(−1)rtp = −tp since r is odd, hence tp = 0),

3. on a symmetric space (M, g), parallel transport of two-dimensional subspaces does NOT
change the sectional curvature, (for Riemannian connection∇ and its corresponding curvature
tensor R, we have ∇ ◦R is a 3-tensor, and is hence 0),

4. the exponential map4 expp is smooth on some open neighborhood of 0 in Dp,

5. if M is geodesically complete then exp0 is defined on the whole of TpM ,

6. let (M, g), (M ′, g′) be Riemannian manifolds in wich parallel transport of 2-dimensional sub-
spaces of tangent spaces does NOT change the sectional curvature, let a : TpM → Tp′M

′ be
a linear isometry st K(p, E) = K(p′, aE) for every 2-dimensional subspace E ⊆ TpM ; then,
expp(X) 7→ expp′(aX) is an isometry of a neighborhood of p onto a neighborhood of p′,

1Here we use that there are exactly two square roots of any z ∈ U1 and they differ by π in angle and that eiπ = −1.
2A Riemannian manifold is geodesically complete if every maximal geodesic is defined on the whole of R.
3A canonical r-tensor on a symmetric space (M, g) is an r-tensor fixed by every isometry of (M, g) ie for each
p ∈ M , t st tp ◦ (dσp)

r = tp for all σ ∈ Is(M, g).
4Let v ∈ TpM , let γv : Iv → M denote the maximal geodesic with γv(0) = p and γ′

v(0) = v, let Dp be the set of
v ∈ TpM st Iv contains 1, then, there is a unique map expp : Dp → M , tv 7→ γv(t) whenever tv ∈ Dp.
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7. additionally, if M , M ′ are geodesically complete, connected, and simply connected, then there
is a unique isometry α : M → M ′ st α(p) = p′ and (dα)p = a (the conditions imply that
locally defined isometry extends globally),

8. let p ∈ D,

9. each z ∈ U1 defines an automorphism of the vector space TpD (via multiplication by z)
preserving gp and sectional curvatures,

10. by the above points, there is a unique isometry,

up(z) : D → D,

fixing p and acting as multiplication by z on TpD, ie d(up)p.v = z.v,

11. up(z) is holomorphic since it is smooth and d(up)p is a C-linear map,

12. up(z) ◦ up(z
′) fixes p and acts as a multiplication by zz′, hence by uniqueness it is equal to

up(zz
′),

13. so up : U1 → Hol(D) is a unique well-defined homomorphism st up(z) fixes p and acts on TpM
by multiplication by z.

7 Representations of U(1)

Let T be a torus over a field k, we want to describe representations of T by finite dimensional
k-vector spaces V .

Remark 8. (When T is a split torus) Suppose T is split. Then, every representation ρ : T → GLV

is diagonalizable. Hence,
V = ⊕χ∈X∗(T )Vχ,

where Vχ is the subspace on which T acts through the character χ, ie,

ρ(t)v = χ(t).v,

for v ∈ Vχ, t ∈ T (k).

Definition 7.1. When Vχ ̸= 0, we say χ occurs in V .

Remark 9. (When T splits only over a Galois extension K/k) Let V be a k-vector space and let
ρ be a representation of TK on K ⊗k V . Then, as above,

K ⊗k V = ⊕χ∈X∗(T )Vχ.

FACT 7. To give a representation of T on a k-vector space V amounts to giving a gradation,

K ⊗k V = ⊕χVχ,

for which σVχ = Vσχ for all σ ∈ Gal(K/k), χ ∈ X∗(T ).
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FACT 8. Consider U1 as a real algebraic torus.

1. Its characters are all of the form z 7→ zn, n ∈ Z,

2. X∗(U1) ∼= Z, and complex conjugation is multiplication by −1,

3. any representation of U1 on an R-vector space is a gradation,

V ⊗R C =: V (C) = ⊕n∈ZV
n,

st V (C)−n = V (C)n for all n, here V n is Vχ:z 7→zn ,

4. V 0 is defined over R since V (C)0 = V (C)0.

Proposition 7.1. every real representation of U1 is a direct sum of representations of the following
types,

1. V = R with U1 acting trivially (so V (C) = V 0),

2. V = R2 with x+ iy ∈ U1(R) acting as, (
x y
−y x

)n

,

for n > 0 (so V (C) = V n ⊕ V −n),

these representations are irreducible and hence no two are isomorphic.

8 Classification of Hermitian Symmetric Domains in terms

of Real Groups

Remark 10. Representations of U1 have the same description whether we regard U1 as a Lie
group or as an algebraic group. Hence, every homomorphism U1 → GL(V ) of real Lie groups is a
morphism of algebraic groups.

Proposition 8.1. Let D be an Hermitian symmetric domain. Then, the homomorphism,

up : U1 → Hol(D)+ ∼= G(R)+,

is a morphism of algebraic groups. See Proposition 5.2 and Theorem 6.1.

Recall. Given a Lie group G, we define the adjoint representation,

Ad : G → Aut(G),

g 7→ Adg,

where Adg = d(adg)e : TeG → TeG, and adg : G → G is the inner automorphism by g.
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Theorem 8.1. Let D be a HSD and let G be the associated real adjoint algebraic group (as in
Proposition 5.2).
Then, the homomorphism up : U1 → G attached to a point p of D satisfies,

1. only the characters z, 1, z−1 occur in the representation of U1 on Lie(G)C defined by Ad ◦up :
U1 → G → GL(Lie(G)C), note this means Vχ ̸= 0 only for the characters associated to
n = −1, 0, 1,

2. Ad(up(−1)) is a Cartan involution,

3. up(−1) does NOT project to 1 in any simple factor of G.

Conversely, let G be a real adjoint algebraic group and let u : U1 → G satsify the conditions
1, 2, 3 above. Then, the set D of conjugates of u by elements of G(R)+ has a natural structure
of a Hermitian symmetric domain for which G(R)+ = Hol(D)+ and u(−1) is the symmetry at u
(regarded as a point of D).

Corollary 8.1.1. There is a natural 1 − 1-correspondence between the isomorphism classes of
pointed Hermitian symmetric domains and pairs (G, u), where G is a real adjoint Lie group and
u : U1 → G(R) is a homomorphism satsifying the conditions 1, 2, 3.

Example. Let u : U1 → PSL2(R) be as before (ie u(z) = h(
√
z) mod ± I). Then,

u(−1) =

(
0 1
−1 0

)
,

as one of the square roots of −1 is i. Note, θ := Ad(u(−1)) is a Cartan involution on SL2, (since
SLθ

2(R) can identified with a closed bounded set in C2 and is hence compact), and hence also on
PSL2. Conditions 1 and 3 are trvially satisfied. Hence, the set D of conjugates of u by elements
of PSL2(R)+ is a Hermitian symmetric domain for which PSL2(R) = PSL2(R)+ = Hol(D)+ and
u(−1) is the symmetry at u. Furthermore, D is H1 as PSL2(R) ∼= Is(H1).
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