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1 Lie Groups and Algebraic Groups

1.1 Lie Groups

We start with defining Lie groups, and look at some examples thereof.

Definition 1.1 (Lie group)
A real (complex) Lie group is a differentiable (complex) manifold with a group structure, such
that multiplication and inversion are smooth (holomorphic) maps.

In this seminar, we will focus mostly on real Lie groups, hence hereafter a Lie group is a real
one, unless stated otherwise. We now list some examples of Lie groups.

Example 1.2
(1) Every finite group is a Lie group, considering it as a discrete topological space and hence

a zero-dimensional manifold.

(2) In dimension one, we have only two connected Lie groups: the real line R with addition as
group operation, and S1 considered inside C and with multiplication as the group opera-
tion.

(3) The general linear group GLn(R) is a real Lie group of dimension n2. The following
subgroups of GLn(R) are Lie groups, and are so-called matrix Lie groups.

• The special linear group, SLn(R), consisting of those invertible matrices with de-
terminant 1, is a Lie group of dimension n2 − 1.

• The orthogonal group, O(n,R), consisting of those invertible matrices whose inverse
is its tranpose (equivalently, they respect the standard dot product on R), is a Lie
group of dimension n(n− 1)/2.
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• The special orthogonal group, SO(n,R), the intersection on O(n,R) and SLn(R),
is also a Lie group of dimension n(n− 1)/2.

• The symplectic group, Sp(2n,R), consisting of those matrices M of order 2n ×
2n satisfying MTΩM = Ω is a Lie group of dimension n(2n + 1), where Ω =(

0 In
−In 0

)
. It is a subgroup of SL2n.

(4) We similarly have the complex general linear group GLn(C), with the Lie subgroups
SLn(C), Sp(2n,C). Notice that the subgroups U(n), SU(n) of orthogonal and special
orthogonal matrices, respectively, is a subgroup, but only a real Lie group; their defining
equations involve conjugation, which is not a holomorphism, so we do not have a complex
structure on them.

We now come to the most important example of Lie groups for the seminar, for which we
need some preliminary definitions. A manifold is homogeneous if its automorphism group acts
transitively on it. A manifold is symmetric if it is homogeneous and at some (equivalently by
homogeneity, at each) point p there is a an involution sp having p as a unique local fixed point, i.e.
s2p = 1 and p is the only fixed point of sp in some neighbourhood of p. A connected symmetric
Riemannian manifold is called a symmetric space. The group of isometries of a symmetric
space has a canonical structure of a Lie group, with the group action given by composition.

Let M be a symmetric space, and denote by I(M) its group of isometries. We will define the
topology on I(M) making it into a Lie group, though we will not prove that it is a Lie group. The
interested reader may find it in [Hel25][§4, Lemma 3.2]. The topology on I(M) is the so-called
compact open topology. It is defined as follows: Let C,U be a compact and an open subset of
M , respectively, and define

W (C,U) := {g ∈ I(M) | g · C ⊆ U}.

We then let the topology on I(M) be the one generated by these sets.

1.2 Algebraic Groups

We now define and list some examples of algebraic groups.

Definition 1.3 (Algebraic group)
An algebraic group over a field k is an algebraic variety G, together with an element e ∈ G
(strictly, e ∈ G(k)), and regular maps m : G × G → G and i : G → G, such that they satisfy
the usual group axioms, with m being multiplication, i inversion, and e the identity element.

We now list some examples of algebraic groups.

Example 1.4
(1) As we saw last lecture, by definition an abelian variety is an algebraic group.

(2) The affine line A1(k) with the group structure of addition is an algebraic group. We denote
it by Ga(k).
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(3) Let Gm(k) be the affine variety defined by the equation xy = 1 in A1(k). The point-
wise multiplication and inversion maps are regular, with identity element (1, 1), and make
Gm(k) into an algebraic group.

(4) The general linear group GLn(k) is an algebraic group over k — it is cut out by the poly-
nomial equation det(xij)t− 1 = 0 inside An2+1(k), where we denote the last variable by
t. Then, the its subgroups SLn(k),O(n, k), SO(n, k), Sp(2n, k) as above have definitions
that are valid over any field, and make them into algebraic groups as well.

We have the first equivalence theorem of a large class of algebraic groups.

Proposition 1.5
Let G be an algebraic group over k. Then the underlying variety of G is affine, if and only if
G is embeddable in some GLn(k), i.e. there is a regular map G ↪→ GLn(k). We call such an
algebraic group affine (after the former condition) or linear (after the latter).

Notice that in particular, this implies that Ga(k) and Gm(k) are linear. Indeed, Gm(k) '
GL1(k), and one has the following faithful representation:

Ga(k) ↪→ GL2(k)

a 7−→
(
1 a
0 1

)
.

1.3 Connection Between the two

We now explain some of the similiarities between Lie and algebraic groups.
Suppose G is an algebraic group over R. If G is smooth1, then G (or rather, G(R)) can be

naturally given the structure of a smooth real manifold. As regular functions are smooth, this
turns G into a Lie group.

So in some sense, algebraic groups generalise Lie groups to arbitrary fields. However, this is
not strictly true, as some Lie groups do not arise from algebraic groups.

Moreover, in studying both (smooth) algebraic groups and Lie groups, one often uses their Lie
algebras, to greater or lesser extent.

2 Interesting Algebraic Groups

2.1 Unipotent Groups

Let Un ⊆ GLn(k) denote the subgroup of all upper-triangular matrices with diagnoal 1.
We call a linear algebraic group G unipotent if it is isomorphic to a closed subgroup of Un

for some n. By a non-trivial theorem (see [Milc][§13]), this is equivalent to each element of G
being unipotent, where g ∈ G is called unipotent if for all representations ρ : G → GLn(k) we
have ρ(g) unipotent, i.e. is of the form 1 + n for some nilpotent n ∈ GLn(k).

1We can define smoothness by the so-called Jacobian criterion, requiring the Jacobian matrix of the defining poly-
nomials to be of maximal rank at every point.
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By another non-trivial theorem (see [Mat]), all unipotent subgroups of GLn(k) are conjugates
of Un. To give intuition for this statement, consider the case n = 3. Then the conjugates of U3

under permutation matrices are:

σ = () :

 1 ∗ ∗
1 ∗

1

 ,

σ = (12) :

 1 ∗
∗ 1 ∗

1

 ,

σ = (23) :

 1 ∗ ∗
1
∗ 1

 ,

σ = (13) :

 1
∗ 1
∗ ∗ 1

 ,

σ = (123) :

 1
∗ 1 ∗
∗ 1

 ,

σ = (132) :

 1 ∗
1

∗ ∗ 1

 .

These are all the unipotent subgroups of GL3(k). Notice that if we allow a subgroup to have
any non-zero elements in both the (1, 2) and (2, 1) entries, then their conjugate will yield any
element in the (2, 2) entry. That is, a unipotent group cannot contain a subset of the form 1 ∗

∗ 1
1

 .

Also, if a subgroup contains a subset of the form 1
∗ 1

∗ 1

 ,

then it must contain all lower-triangular matrices.

2.2 Reductivity and Semisimplicity

Let R(G) be the radical of a linear algebraic group G, that is defined as the maximal connected
solvable normal subgroup of G. We let Ru(G) be the unipotent radical of G, that is defined as
the maximal connected unipotent normal subgroup of G. We call G semisimple if R(G) = 0,
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and reductive if Ru(G) = 0. As every unipotent group is solvable, we have Ru(G) ⊆ R(G),
so a semisimple group is reductive. If char k = 0 then a group is reductive if and only if all
finite-dimensional representations of it are semisimple.

The groups GLn(k), SLn(k),O(n, k), SO(n, k), Sp(n, k) are reductive. The multiplicative
group Gm and finite products of it are reductive. The group SLn(k) is furthermore semisimple,
but GLn(k) is not, as its radical is the subgroup of scalar matrices.

As non-examples, any unipotent group is not reductive, as its unipotent radical is itself. The
Borel subgroup ofGLn(k), i.e. the subgroup of upper-triangular matrices, hasUn as its unipotent
radical, so it is not reductive.

2.3 Simple Connectedness

A connected algebraic group G in characteristic zero is called simply connected if every isogeny
G′ → G is an isomorphism. Every semisimple algebraic group has a unique isogeny G̃ → G
with G̃ connected and simply connected.

The motivation for the definition is as follows. Suppose G is a simply connected Lie group,
and f : G′ → G is an isogeny (i.e. a Lie group homomorphism which is also covering map).
Then the induced maps on the Lie algebras df : g′ → g is an isomorphism, so it has an inverse
dg. As G is simply connected, dg can be integrated to a unique function g : G → G′. By the
same argument, f ◦ g = IdG. Then, as dg : g → g′ is an isomorphism, G is a connected Lie
subgroup of G′, with g the inclusion map. But for any Lie subalgebra h of g′ there is a unique
connected Lie subgroup of G′ with Lie algebra h. Applying this to h = g = g′, and using the
uniqueness part, we obtain G ' G′ via the map g. Then f is an isomorphism.

Conversely, if G is a Lie group such that each isogeny G′ → G is an isomorphism, then G is
simply connected as each Lie group has such an isogeny from its universal cover, which is simply
connected.

2.4 Derived and Adjoint Subgroup

Assume G is an algebraic or a Lie group. The derived subgroup of G is the subgroup of G
generated by all the commutators ghg−1h−1, and will be denoted by Gder. The adjoint group
of G is the quotient of G by its centre, and will be denoted by Gad. It is a non-trivial fact that the
adjoint group of G is indeed an algebraic group. Note also that if k is not algebraically-closed,
then the adjoint group is not given by the naïve quotient (it is the categorical quotient).

If G is reductive then Gder is semisimple.

2.5 Isogeny Classification of Semisimple Groups

We call a linear algebraic group simple if it has no non-trivial smooth, connected normal sub-
groups. This is known to be equivalent to having no infinite proper normal subgroups. Notice
that this is weaker than the standard notion of simplicity of abstract groups. One intuition for this
definition is that it defines a smooth algebraic group to be simple if and only if its Lie algebra
is. Using this definition allows us to use Lie algebra theory, and the correspondence theorems
between smooth algebraic groups and Lie algebras, to greater effect.

5



We have the following theorem, which we will not prove. A proof is given in [Milb][Theorem
4.5].

Theorem 2.1
An algebraic group is semisimple if and only if it is isogenuous to a product of simple algebraic
groups.

3 Some Results
We now list some results above algebraic groups. Most of these can be found in [Mila].

3.1 More on Reductive Groups

For a reductive group G, we have the following commutative diagram:

Gder

Z G Gad

T

ad

ν

Here, the column and row are short exact sequences, the diagnoal maps are isogenies with kernel
Z ∩ Gder, the centre of Gder, and T is the abelianization of G, which is a torus. From this we
obtain the short exact sequence

1 → Z ∩Gder → Z ×Gder → G → 1.

As an example, consider G = GLn(k). Then the diagram is

SLn(k)

Gm(k) GLn(k) PGLn(k)

Gm(k)
(−)n

ad

det

And the short exact sequence is

1 → µn → Gm(k)× SLn(k) → SLn(k) → 1.
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3.2 Tensors

Let G be a reductive group over a field k of characteristic zero. Let ρ : G → GLn(V ) be a
representation of G.

The dual ρ∧ of ρ is the representation of G on the dual space V ∧ given by

(ρ∧(g) · f)(v) := f(ρ(g−1) · v),

for all g ∈ G, f ∈ V ∧, v ∈ V . A representation is said to be self-dual if it is isomorphic to its
dual.

An r-tensor of V is an element of (V ⊗r)∧. For an r-tensor t, the condition

t(gv1, . . . , gvr) = t(v1, . . . , vr) ∀(v1, . . . , vr) ∈ V r,

cuts out an algebraic subgroup of GL(V ), which we denote by GL(V )t. For a set of tensors T ,
the subgroup of GL(V ) fixing the t ∈ T is the subgroup

⋂
t∈T GL(V )t.

Proposition 3.1
For any faithful self-dual representation G ↪→ GL(V ), there exists a finite set of tensor of V such
that G is the subgroup of GL(V ) fixing the t ∈ T .
Proposition 3.2
LetG be the subgroup ofGL(V ) fixing the tensors t in some set T . Then we have the isomorphism

Lie(G) ' {g ∈ End(V ) |
∑
j

t(v1, . . . , gvj , . . . , vr) = 0, ∀t ∈ T, vi ∈ V }.

3.3 Real Points of an Algebraic Group

For an algebraic group G over R, we denote by G(R)+ the connected component of the identity
element, taken in the real topology.
Proposition 3.3
Ifϕ : G → H is a surjective map of algebraic groups overR, then the induced mapϕ : G(R)+ →
H(R)+ is surjective.

Here the surjectivity is in the sense of maps of schemes. Note though that the map G(R) →
H(R) need not be surjective in general. As a counter-example, consider the surjective map
(−)n : Gm → Gm; the induced map (−)n : R× → R× is not surjective when n is even. Also,
SL2 → PGL2 is surjective, but the image of SL2(R) → PGL2(R) is PGL2(R)+.

Notice that if G is a simply connected algebraic group, then G(C) is simply connected, but
G(R) need not be. As an example, SL2(R) is not simply connected. This corresponds2 to the
universal cover of G(R) not necessarily coming from an algebraic group. However, in some
cases G(R) is still nice enough.
Theorem 3.4
If G is a simply connected semisimple algebraic group over R, then G(R) is connected.

Corollary 3.5
If G is a reductive group over R, then G(R) has finitely many connected components.

2I think.
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3.4 Cartan Involutions

Let G be a connected algebraic group over R. An involution θ of G (i.e. an order two self-map
of G as an algebraic group) is Cartan if the subgroup

G(θ)(R) := {g ∈ G(C) | g = θ(g)}

is compact, where (−) denotes complex conjugation.
Example 3.6
Suppose G = SL2(R), and let θ = ad

(
0 1
−1 0

)
. Then

θ

((
a b
c d

))
=

(
d −c

−b a

)
.

So

SL
(θ)
2 (R) =

{(
a b
c d

)
∈ SL2(C) | d = a, c = −b

}
=

{(
a b

−b a

)
∈ GL2(C) | |a|2 + |b|2 = 1

}
= SU2(R).

This is known to be compact, so θ is a Cartan involution.
Theorem 3.7
There exists a Cartan involution of G if and only if G is reductive. In that case, any two Cartan
involutons of G are conjugate by an element of G(R).
Example 3.8

(1) Notice that G(IdG)(C) = G(R). Thus the identity map on G is a Cartan involution if and
only if G(R) is compact. By the theorem, in that case it is the only Cartan involution.

(2) Let G = GL(V ) for V some real vector space. A choice of basis of V yields a transpose
operator on G, and M 7→ (M t)−1 is then a Cartan involution. As change of basis is given
by conjugation, the theorem implies that all cartan involutions of G are given this way.

(3) Let G ↪→ GL(V ) be a faithful representation of G. Then G is reductive if and only if it is
stable under some transpose operator given by a choice of basis of V , and in that case the
restriction of the map M 7→ (M t)−1 in the previous example is a Cartan involution of G.
It turns out that all Cartan involutions of G arise in this way.

(4) Let θ be an involution of G. There is a unique real form G(θ) of G(C) such that complex
conjugation on G(θ)(C) is given by g 7→ θ(g). Thus θ is Cartan if and only if the real form
G(θ) is compact. All compact real forms of G(C) arise in this way.

Proposition 3.9
If G(R) is compact, then every finite-dimensional real representation of G has a G-invariant
positive-definite symmetric bilinear form. Conversely, if one faithful real finite-dimensional rep-
resentation of G has such a form, then G(R) is compact.
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The bilinear form is defined using Haar measure, which gives some intuition for why compactness
matters.

Let C ∈ G (strictly, C ∈ G(R)) whose square is central, which implies that ad(C) is an
involution and ad(C) = ad(C−1). A C-polarization on a real representation V of G is a G-
invariant bilinear form ϕ such that the form

(u, v) 7→ ϕ(u,Cv),

which we denote by ϕC , is symmetric and positive-definite.

Proposition 3.10
If ad(C) is a Cartan involution of G, then every finite-dimensional real representation of G
has a C-polarization. Conversely, if some faithful finite-dimensional representation of G has a
C-polarization, then ad(C) is a Cartan involution.

3.5 Approximation Theorems

Recall that we defined the ring of finite adèles as the restricted product

Af =
∏
ℓ

(Qℓ,Zℓ),

where ` runs over all the primes, and the restricted product means we require all elements (aℓ)
to satisfy aℓ ∈ Zℓ for almost all `. The topology is generated by products of opens, almost all of
which are Zℓ.

Let G be an algebraic group over Q. We call G of compact type if G(R) is compact, and of
noncompact type if it does not contain a non-trivial normal subgroup of compact type.

Theorem 3.11 (Strong Approximation)
If G is semisimple, simply connected, and of noncompact type, then G(Q) is dense in G(Af ).

Theorem 3.12 (Real Approximation)
If G is connected, then G(Q) is dense in G(R).

4 Weil Restriction
We now explain the concept of Weil restriction. Suppose L/K is a finite field extension, and
X/L is a scheme over L. Consider the functor (Sch/K)op → Set given by

T 7→ X(T ×K L).

If this functor is representable, then we call its representing scheme the Weil restriction of X
to K, and we denote it by ResL/K X . With this definition one sees that Weil restriction takes
group schemes to group schemes. Indeed, a group scheme may be defined as a scheme whose
functor of points factors through Grp, in which case almost by definition the functor of points
of the Weil restriction factors through Grp as well.

9



We now limit ourselves to the case of X a variety over L. In this case, the Weil restriction of
X to L exists, and is roughly given as follows. Suppose X = L[y1, . . . , yn]/(f1, . . . , fm). Let
d = [L : K] and let a1, . . . , ad be a K-basis of L. Then we formally write

yi = a1xi1 + . . .+ adxid.

We now substitue this into the polynomials fj , thus getting polynomials in the x-variables. How-
ever they still have L-coefficients. But now a relation of polynomial with L-coefficients can be
written as d relations with K-coefficients, using the basis a1, . . . , ad. We thus obtain the Weil
restriction of X to K. We will not cover the explicit construction of the group structure here, in
case X is a group variety.

We now demonstrate this via the so-called Deligne torus. It is the Weil restriction of Gm(C)
to R. We apply the above algorithm to it. Recall that Gm(C) was given by C[y1, y2]/(y1y2− 1).
We write y1 = x1 + ix2, y2 = x3 + ix4. The relation y1y2 − 1 = 0 then becomes

x1x3 − x2x4 − 1 = 0, x1x4 + x2x3 = 0.

So
ResC/RGm = R[x1, x2, x3, x4]/(x1x3 − x2x4 − 1, x1x4 + x2x3).

We claim that this is isomorphic to R[x, y][(x2 + y2)−1], as one might expect the restriction of
Gm(C) to be. The isomorphism is given by

x1 7→ x, x2 7→ y, x3 7→
x

x2 + y2
, x4 7→ − y

x2 + y2
.

This is surjective as (x21 + x22)(x
2
3 + x24) = 1. For injectivity, by multiplying an equation with

the highest power of x2 + y2 in a denominator, it is enough to show injectivity on polynomials
in x1, x2. But this is true as x1, x2 do not have any relations between themselves. Thus

ResC/RGm = R[x, y][(x2 + y2)−1].
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